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Universal Artificial Intelligence (UAI)

A foundational theory of Al

Universal
Artificial Intelligence

Sequential Decisions
U A I Based on Algorithmic Probability

) Springer
Framework
Learning Goal Planning

Answers: What is the right thing to do?
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Framework

At each time step t, the agent
Agent ay Environment

e submits action a;
® receives percept e,

L ey History &y = aie1a0€s ... a5 1641

Set of histories: (A x £)*
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AIXI takes a Model-Based Bayesian RL approach

@ Start with a prior over environments

o Learning After gaining experience, update prior to posterior over
environments

e Sometimes convenient to think of this as single mixture environment
@ Planning Calculate the long-term Bayes-Optimal solution

o Expectimax search: max over actions, expectation over percepts

e At root, probability of percept generated according to current posterior

e At each child, update posterior given history we would have observed
at that point (very different from planning in a known model)

e "“Solves” the exploration-exploitation dilemma: If we would gain more
reward by information gathering, we will do so

e Optimal over prior distribution
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Agent and Environment

Agent - ﬂ: Lo

Policy

T (AXE = A /\ /\ /\ /\ as = m(aser)
Next action

ap = 7T(39<t)

Environment
Distribution

p: (AXE* XA~ E
Probability of next
percept:

pler | ®<iar)

TR 3]
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Expectimax Planning
The expected return is called value: V(&) = Ej[R(&1.00) | 2]

R(&100) =71+ T2+ 7" T 7™ Tmi1 + - = R(a1m)
effective\rhorizon <e

Optimal policy:
" = argmax, VI

An e-optimal policy can be
found in any environment u

aj = argmax E wuler | ar) max E ulez | areras) .. - max E wlem | @<mam)R(%®1:m)
m
em

el
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Principles

Occam
Prefer the simplest consistent hypothesis

Epicurus

Keep all consistent hypotheses

Bayes

Pr(Hyp) Pr(Data | Hyp)
Pr(H Data) = .
r(Hyp | Data) ZHZ-EH Pr(H;) Pr(Data | H;)

Tom Everitt (ANU) Universal Artificial Intelligence JuIy’ 16, 2016 17 / 63




Remaining questions

What is the class of hypothesis?
What is the prior?

Turing

“It is possible to invent a single machine which can
" be used to compute any computable sequence.”
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Solomonoff Induction

Use computer programs p as hypotheses/environments

Given Turing-complete programming language U, programs can

e describe essentially any environment

be checked for consistency: is p(a<;) = e«?

be used for prediction: compute p(a-ia;)
be ranked by simplicity: Pr(p) = 274®)

Solomonoff=Epicurus+Occam+Turing+Bayes

Make a weighted prediction based on all consistent
programs, with short programs weighted higher
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Ray Solomonoff: A Formal Theory of Inductive Inference

INFORMATION AND CONTROL 7, 1-22 (1964)

A Formal Theory of Inductive Inference. Part I

R. J. SoLoMONOFF

Rockford Research Imstitute, Inc., Cambridge, Massachusetts

1. SUMMARY

In Part I, four ostensibly different theoretical models of induction
are presented, in which the problem dealt with is the extrapolation of a
very long sequence of symbols—presumably containing all of the infor-
mation to be used in the induetion. Almost all, if not all problems in
induetion ean be put in this form.

Some strong heuristic arguments have been obtained for the equiva-
lence of the last three models. One of these models is equivalent to a
Bayes formulation, in which a priori probabilities are assigned to se-
quences of symbols on the basis of the lengths of inputs to a universal
Turing machine that are required to produce the sequence of interest as

output.
'Ray J Solomonoff. “A formal theory of inductive inference. Part I'. . In:
Information and control 7.1 (1964), pp. 1-22.
2R.J. Solomonoff. “A formal theory of inductive inference. Part II". . In: Information

(June 1964), pp. 224-254.
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Solomonoff-Hutter's Universal Distribution

M(e |ac)= Y, 270

Pip(a<t):€<t

_ o Occam: Simpler program higher weight
® o action sequence
ey mEvEEE S e Epicurus: All consistent programs
D COmEEEr [ » Bayes: Discard inconsistent programs
® /((p) length of p . .
e Turing: Any computable environment

Predict with
M(€<t€t | a<t(lt)

M(et | ae<tat) = M(e . | a t)
< <
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Results Solomonoff Induction

Theorem (Prediction error)

For any computable environment p and any actions aj..o:

Z]Eu[\ — (0| xf<[,(lg,):| < 51r12 K ()
=1l ~~

prediction error at time t

0.8 B
» Solomonoff induction only makes ol |
finitely many prediction errors ‘
. 0.4 i
» The environment 1 may be
0.2 9

deterministic or stochastic

Agent can learn any computable environment
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Expectimax in Unknown Environments: AlXI

AlXI replaces p with M: maix; = arg max V),

™

a] = arg maxz M(ey | a1) max Z M(ez2 | areraz) ... max Z M(em | <mam)R(21:m)
aq as - am < -

» Learn any
computable

environment

e Acts
Bayes-optimally

action a; = marx1(€)

* One-equation
theory for Artificial

General Intelligence
. . 2 2 a2 2\ a2 = marxi(e<2)
e Computation time: /N /A /A /

exponential xinfinite
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Bayes Optimality and Optimal Exploration

o AIXI is guaranteed to learn to predict percepts it receives
(on-sequence)
e But what about those it does not receive due to actions it did not
take? (off-sequence)

o AIXI is guaranteed to be Bayes-Optimal

e Very subjective notion of optimality as it depends on believing the
prior

e Seems better to aim for asymptotic optimality: In the limit of data
take actions optimally in any environment

o AIXI is not asymptotically optimal, in fact the two are at odds [§]

o Bayes: Immediate, incomplete Asymptotic: Long-term, complete

e Very recent work suggests optimistic approaches or Thompson
sampling give us asymptotic optimality [12, 6]
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Benefits of a Foundational Theory of Al

AIXI/UAI provides
» (High-level) blue-print or inspiration for design
e Common terminology and goal formulation
Understand and predict behaviour of yet-to-be-built agents

Appreciation of fundamental challenges (e.g.
exploration/exploitation)

Definition /measure of intelligence
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AIXI Approximation [15] [4]

Bayesian optimality notion

“As AlXI is only asymptotically computable, it is by no means an
algorithmic solution to the general reinforcement learning problem.
Rather, it is best understood as a Bayesian optimality notion for decision
making in general unknown environments.”

Approximating AlXI

Next: How to construct tractable approximations of AIXI|?
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Monte-Carlo AIXI Framework [13]

Environment Perform action in real world

Record new sensor information

Past Observauon/Reward Acnon

.. Past Z Observation/Reward Record Action

Refine environment model An approximate AIXT agent r’
al, a2 a3
ol \2 @/ \ot
f /
Update Bayesian Mixture of Models C

D E H]]] . - E ._/ﬁ"ure reward estimate

Determine best action
Simple Complex

Large Prior Small Prior
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Approximate Learning and Planning

Approximating Expectimax (§4)

Use a generalisation of Upper Confidence Bound for Trees (UCT) (Kocsis
and Szepesvari 2006) to approximate the expectimax operation

Environment Model (§5)

Use an agent-specific extension of Context Tree Weighting (CTW)
(Willems, Shtarkov, and Tjalkens 1995), a Bayesian model averaging
algorithm for prediction suffix trees, for prediction and learning
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MC-AIXI-CTW: Approximating Expectimax

Planning with expectimax search takes exponential time

Sample paths in expectimax tree (anytime algorithm)
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Monte Carlo Tree Search

a; = argmax V' (a)
a

P(ey | a)

ay = argmax V' (ae1a)

a

P(GQ | (11610,2)

Upper confiijence bound e unexplored: high logT/T(a)
V*(a) = V(a) ++/logT/T(a) T(a) = times explored (a)
SN~~~ SN————— o n - &

average exploration bonus ® promising: hlgh V(a)

MCTS famous for good performance in Go (Gelly et al., 2006)
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Context Tree Weighting (CTW)

AU T
A ATA A A
CTW “mixes’ over all 22° context trees of depth < D
CTW(e< | asy) 22 LD (eey | acy)
M(e< | acy) ZQ p) plac) = e« ]

Computation time:
M(e; | ®<iar) Infinite
CTW (e, | @<a;) Constant (linear in max depth D)
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Comparison of MC-AIXI-CTW and AIXI Model Classes

argrr}laxz maxz %r,} Z 27O Pr(x sy | M, @rigam)-

2%
" Xpw Li=t MeCp

t+m
§ § § § K(p)
arg max . max T, 2” X a
g a 1] P( 1r+m| 1r+m)

Arim
" Xpam Li=t pPEM

From §6: “Compare this to the action chosen by the AIXI agent, where
class M consists of all computable environments p and K(p) denotes the
Kolmogorov complexity [7] of p. Both use a prior that favours simplicity.
The main difference is in the subexpression describing the mixture over the
model class. AIXI uses a mixture over all enumerable chronological
semimeasures, which is completely general but incomputable. Our
approximation uses a mixture of all prediction suffix trees of a certain
maximum depth, which is still a rather general class, but one that is
efficiently computable.”
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Efficiency / Experimental Results [13]

Learning Scalability - 4x4 Grid
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Discussion / Additional approaches to AIXI Approximation

e Optimal Ordered Problem Solver3
@ An Approximation of the Universal Intelligence Measure*
e Compress and Control®

o Feature Reinforcement Learning®

3Jiirgen Schmidhuber. “Optimal Ordered Problem Solver”. In: Machine Learning
54.3 (Mar. 2004), pp. 211-254.

*Shane Legg and Joel Veness. “An Approximation of the Universal Intelligence
Measure”. In: (Sept. 2011), p. 14. arXiv: 1109.5951.

®Joel Veness et al. “Compress and Control”. In: (2014). arXiv: 1411.5326.

5Marcus Hutter. “Feature Reinforcement Learning: Part |. Unstructured MDPs" .
In: Journal of Artificial General Intelligence 1.1 (Jan. 2009), pp. 3-24.
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