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Abstract. We review the deep reinforcement learning setting, in which
an agent receiving high-dimensional input from an environment learns
a control policy without supervision using multilayer neural networks.
We then extend the Neural Fitted Q Iteration value-based reinforcement
learning algorithm (Riedmiller et al) by introducing a novel variation
which we call Regularized Convolutional Neural Fitted Q Iteration (RC-
NFQ) that incorporates convolutional neural networks similarly to the
Deep Q Network algorithm (Mnih et al) and dropout regularization to
improve generalization performance. Finally, we present an implementa-
tion of the algorithm and discuss several extensions.

1 Neural Networks

1.1 Introduction

Neural networks are non-linear parametric statistical models. There are multiple
supervised and unsupervised learning algorithms associated with them. Learning
multilayer neural network models, also known as deep learning, involves choosing
a model type and an architecture for the model, and then learning suitable model
parameters. While all such models consist of directed graphs of artificial neurons,
many specific higher-level regularities have been proposed as building blocks,
such as convolutional neural networks and recurrent neural networks. They are
proposed in order to counteract the combinatorial explosion of possible network
configurations based on the following observations about the domains operated
upon in the natural world:

– The environment contains many statistical regularities
– Similar patterns tend to appear in multiple regions of space and time
– Natural scenes have a hierarchical, compositional structure

The most common learning algorithm for neural networks is the backpropaga-
tion algorithm [33, 21], which is a supervised learning method that uses labeled
examples, and computes the difference between the network’s output and the
target output, and iteratively makes small adjustments to the network until its
predictions better match the labeled examples.

An excellent survey of the field is available in [38] containing an overview of
each subfield, along with historical developments and 888 references. A textbook,
Deep Learning [3], is also available.



1.2 Convolutional Neural Networks

Convolutional neural networks [21, 20, 9, 3] are multi-layer perceptrons with par-
ticular constraints on their weights. They have demonstrated significant suc-
cesses in recent years in the field of computer vision [34]. They demonstrate
some similarities to the human visual cortex, although they also exhibit many
differences [14, 1].

Within each layer there exists a set of feature detectors, each of which re-
sponds to the presence of a particular pattern in an input tensor. Each feature
detector is applied at multiple locations in the input tensor. This application
of identical feature detectors across the input is referred to as weight sharing.
At each location, the extent to which the feature is present is calculated by
the discrete convolution operator. To represent the information more compactly,
dimensionality reduction techniques which aim to extract the most relevant com-
ponents are utilized between layers; usually max pooling layers [21], which only
consider the most prominent feature within a particular location, or, more re-
cently, strided convolutions [42], which spatially separate the application of the
feature detectors in such a way as to reduce the dimensionality of the output by
reducing the amount by which they overlap.

1.3 Gradient Descent Algorithms

Gradient descent in neural networks is an optimization method that aims to
minimize an objective function J(θ) parameterized by the parameter vector θ of
a neural network, by iteratively updating a candidate solution based on the local
gradient ∇θJ(θ) of the function to be optimized with regards to its parameters,
evaluated on some training examples. The solution is updated by taking steps in
the opposite direction of the gradient. The magnitude of each update is controlled
by a learning rate η.

In full-batch gradient descent, all of the training examples are used to com-
pute the gradient at each step. A variant, called stochastic gradient descent,
uses a single training example at each step. There is yet another variant, called
mini-batch gradient descent, which lies between these two concepts and is the
most commonly used. It uses a subset of the training examples at each step to
compute the gradient, which can lead to faster convergence behavior.

There exist more sophisticated gradient descent algorithms that aim to adap-
tively change the learning rate on a per parameter basis as the optimization pro-
ceeds. One of these algorithms, which we will use in this work, is RMSprop [45]
which is a mini-batch varient of the Rprop [32] batch gradient descent algorithm.
Other common alternatives are Adagrad [7], Adadelta [50] and Adam [17].

2 Reinforcement Learning

2.1 Introduction

Reinforcement learning [44, 23] is a general framework for the problem of an
agent embedded in an unknown environment that learns a behavior policy that



maximizes a reward function. The standard reference for the field is [44], and a
survey of recent techniques is found in [48]. Under the reinforcement learning
paradigm, an agent sends actions to an environment, and receives observations
and rewards in response.

Reinforcement learning belongs to the fields of machine learning and artificial
intelligence. For a survey of definitions of artificial intelligence, see [23]. For a
broad view of artificial intelligence in general, see [35]. For a universal theory of
optimal artificial intelligence and reinforcement learning, refer to [15] and [22].

As a general framework, there are many specific methods that can be de-
scribed within the reinforcement learning setting. Unsupervised learning meth-
ods can also be considered part of reinforcement learning when they are em-
ployed by the agent to improve its ability to achieve rewards. For a survey of
unsupervised learning applied in this context, see [38, Section 6.4].

The most common formalism used to describe this setting involves the agent
observing a state s and taking an action a, and the environment responding
with a reward signal r along with a subsequent state s′. This agent-environment
interaction is then repeated through time, defining a sequence of experience
tuples (s, a, r, s′) which can be used as input to various reinforcement learning
algorithms.

If the environment is fully observable, then the observation at a particular
time corresponds to the exact configuration of the environment; in more complex
problems, the environment may only be partially observable, in which case the
agent only has access to a particular subset of the true state of the environment
through its observations.

The policy of an agent represents how the agent behaves, conditional on its
observations of the environment and the state of its internal memory. There are
many ways that a policy can be represented. It can be as simple as a lookup table,
which is equivalent to a reflex agent [35] in artificial intelligence. Alternatively,
the agent can parameterize its policy in some way, so that its responses become
a more complex function of the state of the environment and its internal state.

A further distinction is made between model-based reinforcement learning,
in which an agent learns an explicit model of the conditional transition proba-
bilities P (s′|s, a) of the environment, and model-free reinforcement learning, in
which an agent does not explicitly model the environment. There are two major
approaches within the model-free reinforcement learning setting: direct policy
search methods and value-based methods, both of which we review below.

2.2 Exploration and Exploitation

An important tradeoff in reinforcement learning exists between the exploitation
of current estimates to increase immediate reward and further exploration of
the environment to improve the likelihood of future reward through improved
accuracy. This is commonly referred to as the exploration versus exploitation
tradeoff [44, Chapter 1].



2.3 Function Approximation

The simplest category of reinforcement learning problems are the tabular case,
in which each state is explicitly defined, and state-specific values are learned.
This corresponds to an explicit representation in the form of a lookup table with
an entry for every single state. In all but the simplest domains, this approach is
not practically feasible, due to the size of the state space.

As a result, function approximators are used to generalize from specific states
into more abstract state representations. The concept of function approximation
is related to the concepts of regularization and generalization in statistics, and
compression in information theory. In general, a function approximator takes as
input a high-dimensional state, and maps it to a lower dimensional representa-
tion. Both linear and non-linear function approximation methods are studied.
Neural networks are a particular instance of non-linear function approximators.

2.4 Direct Policy Search

In direct policy search, the space of possible policies is searched directly. The
agent does not attempt to model the transition dynamics of the environment,
nor does it attempt to explicitly learn the value of different states or actions.
Instead, it iteratively attempts to improve a parameterized policy. When func-
tion approximation is used, direct policy search is related to approximate policy
iteration.

Direct policy search can be broken down into gradient-based methods, also
known as policy gradient methods, and methods that do not rely on the gradi-
ent. In policy gradient methods, often the gradient is not explicitly known and
must be approximated via sampling from the environment. An example of these
methods is the REINFORCE algorithm [49]. Gradient-free methods include
evolutionary algorithms. A survey on policy search and applications to robotics
is [6].

2.5 Value-Based Methods

In value-based reinforcement learning methods, an agent learns the expected
reward r conditioned on a particular action a in a certain state s. This defines
a function which is called the action-value function.

A central theme in many reinforcement learning algorithms is temporal-
difference (TD) learning. In value-based TD learning, an approximation of the
action-value function is used as an initial estimate and is compared to sample
returns obtained from the environment. Iterative updates are then made based
on the observed error, called the TD error. This is an example of bootstrapping.

A distinction is made between on-policy and off-policy reinforcement learn-
ing algorithms. On-policy algorithms learn the value of the policy that is ac-
tually carried out by an agent, which includes exploration steps that it may
take, whereas off-policy algorithms learn the value of an optimal policy that is
independent of the actual policy being followed.



Q-learning [47] is a commonly used off-policy value-based reinforcement learn-
ing algorithm. In Q-learning, we define an action-value function Q(s, a) and de-
fine an iterative update procedure called one-step Q-learning [44, Chapter 6] as
follows:

Qt+1(st, at)← Qt(st, at) + α
(
rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
where α is a learning-rate parameter, and γ is a parameter that discounts the
value of future rewards versus present rewards.

3 Reinforcement Learning with Neural Networks

3.1 Introduction

As mentioned previously, neural networks can be used as non-linear function
approximators. They are well suited to problems where the state space is high-
dimensional, due to their frequent ability to effectively learn to detect and exploit
patterns in complex domains. The use of neural networks to compress a high-
dimensional state space into a compact representation that is used to learn a
control policy by a reinforcement learning algorithm is also referred to as deep
reinforcement learning.

3.2 Neural Fitted Q Iteration

In batch reinforcement learning [48, Chapter 2], a sequence of samples is collected
from the environment in order to perform batch learning. Using a neural network
function approximator with batch learning led to the Neural Fitted Q-Iteration
(NFQ) algorithm, which is described in detail in [30] and is an extension of
experience replay methods [24]. A practical guide to applying the algorithm is
provided in [31].

3.3 Deep Q-Networks

While NFQ is a batch reinforcement learning method, it is also possible to con-
struct an online algorithm for Q-learning using neural networks. Furthermore,
a convolutional neural network for compressing high-dimensional input images
can be integrated into the overall network that approximates the action-value
function. These are the main extensions used in the Deep Q-Network (DQN) al-
gorithm [27, 28]. Furthermore, this algorithm introduces the notion of a separate
target network that increases the stability of online reinforcement learning with
neural networks by reducing correlations between updates to the parameters and
the targets used to calculate those updates.



3.4 Regularization

Regularization in machine learning consists of any method which aims to de-
crease the generalization error of a model without decreasing the training er-
ror [3, Chapter 5].

Regularization techniques have been studied extensively in machine learn-
ing in general, but have received less attention within the reinforcement learn-
ing literature. Recent work includes [8] and [25]. An excellent overview of the
generalization ability of neural network models grounded in Solomonoff’s algo-
rithmic probability [41] and Kolmogorov complexity [18] is presented in [37].
Dropout [43] has been found to be a simple and effective regularization method
for neural networks.

In [19], it is mentioned that combining regularization with NFQ can be prob-
lematic when there is a minimal amount of training data, as it can cause samples
with low frequency to be regularized away despite carrying valuable information.

Regularization is also applied in autoencoder [3, Chapter 14] neural network
models, in particular in denoising autoencoders and sparse autoencoders, which
can be used to compress the input to reinforcement learning algorithms.

The original NFQ and DQN algorithms do not incorporate regularization
into their neural network models.

4 Regularized Convolutional Neural Fitted Q Iteration

4.1 Introduction

We introduce an algorithm that combines ideas from the Neural Fitted Q Itera-
tion and Deep Q-Network algorithms and adds dropout regularization, resulting
in a novel variation which we call Regularized Convolutional Neural Fitted Q
Iteration (RC-NFQ).

4.2 Algorithm

The Regularized Convolutional Neural Fitted Q Iteration (RC-NFQ) procedure
is illustrated in Algorithm 1. The hyperparameters for the algorithm are de-
scribed in Table 1. In addition to the hyperparameters, a suitable choice of
architecture for the convolutional neural network that will serve both as a func-
tion approximator and to learn the action-value function must be selected. In
the following section, we will describe an example of such an architecture.

5 Architecture

5.1 Q-network

We consider the setting in which an agent is embedded in an environment and
is equipped with a two-dimensional visual sensor, such as a video camera or a



Algorithm 1 Estimate the action-value function using a convolutional neural
network with dropout regularization

Input:
E is an environment, specifying the space of states, actions and rewards
C is an architecture for a convolutional neural network with dropout

regularization layers
hyperparameters, described in Table 1

Output:
Returns a learned action-value function Q

1: procedure RC-NFQ(E,C, hyperparameters)
2: Parameterize identical convolutional neural network models Q0 and Q̂0 which

will be used to learn to approximate the action-value function, using the
architecture specified in C and the dropout probability αdrop for the dropout
regularization layers

3: Initialize action-value function Q0 with a parameter vector θ of random initial
weights

4: Initialize target action-value function Q̂0 with θ− = θ
5: Initialize experience replay buffer D
6: for episode i = 0, αeps do
7: Initialize temporary experience buffer D̃
8: for t = 1, αlen do
9: Select random action with probability ε

10: Otherwise, select action a maximizing the action-value function Qi(s, a)
11: Execute action a in environment E and observe r and s′

12: Store transition (s, a, r, s′) in D̃
13: end for
14: Append D̃ to the experience replay buffer D
15: for iteration k = 0, αiters do
16: Sample random batch of αsamples from D and store in D′

17: Generate a pattern set of training targets where
yi = D′r + γQ̂i(D

′s′ , D′a)
18: Call RMSprop with learning rate αlr to perform gradient descent on

(yi −Qi (D′s, D′a; θ))
2

and store the updated parameters in Qi+1

19: if k is a multiple of αfreq then
20: Update target action-value function Q̂i+1 with parameters from Qi
21: else
22: Copy the parameters from Q̂i to Q̂i+1

23: end if
24: end for
25: end for
26: return Qαeps

27: end procedure



Table 1. Hyperparameters for the RC-NFQ algorithm

Hyperparameter Description

γ discount factor for future rewards

αlr learning rate for RMSprop

αfreq frequency at which the target Q-network is updated

αiters number of iterations of fitted Q-iteration to run between episodes

αlen length of each episode

αeps number of episodes

αsamples number of samples to use within each iteration of fitted Q-iteration

αdrop dropout probability for the dropout regularization layers

series of screen captures from a simulated environment. A convolutional neural
network is used to compress the input images.

We will now present an example of a suitable architecture for the Q-network
for the RC-NFQ algorithm. The convolutional layers are similar to those used
in [27] and [26] with several modifications. The state input consists of only one
input image, and the action is also fed as input, encoded as a one-hot vector. We
add dropout layers after the first and second convolutional layers, and after the
first fully connected layer. The dropout probability used is p = 0.25. The details
of the convolutional neural network are shown in Table 2, and the architecture
of the Q-network is shown in Table 3.

The total number of parameters to be trained in this example architecture
is 305713. The network is trained using RMSprop.

5.2 Source Code

We have developed an initial implementation of the RC-NFQ algorithm with
the architecture described here using the Keras deep learning library [4]. It is
available at: https://github.com/cosmoharrigan/rc-nfq.

Table 2. Example architecture for the convolutional neural network

Layer Input Output Filter Width Filters Stride Parameters

Convolutional 1 (1, 64, 64) (16, 15, 15) 8 16 (4, 4) 1040

Activation 1 (16, 15, 15) (16, 15, 15) - - - -

Dropout 1 (16, 15, 15) (16, 15, 15) - - - -

Convolutional 2 (16, 15, 15) (32, 6, 6) 4 32 (2, 2) 8224

Activation 2 (32, 6, 6) (32, 6, 6) - - - -

Dropout 2 (32, 6, 6) (32, 6, 6) - - - -

Flatten (32, 6, 6) (1152) - - - -



Table 3. Example architecture for the Q-network

Layer Input Output Parameters

ConvNet (1, 64, 64) (1152) 9264

Action Input (4) (4) -

Merge (1152) and (4) (1156) -

Dense 1 (1156) (256) 296192

Activation (256) (256) -

Dropout (256) (256) -

Dense 2 (256) (1) 257

6 Possible Extensions

6.1 Algorithm Modifications

An immediate extension of the convolutional neural network architecture with
dropout layers as described would include the addition of an LSTM [13] recurrent
neural network layer to allow the controller to take advantage of memory of prior
states. In order to extend the integration of dropout regularization layers with
the NFQ algorithm and convolutional neural networks to LSTM networks, the
improved methods for effectively combining dropout with RNNs presented in [10]
could be applied.

An alternative simpler way to add a minimal amount of memory would be to
provide the network with a sequence of several recent frames as an input tensor
to the convolutional neural network, as in [26–28].

Extending the RC-NFQ algorithm to the online case, resulting in a variant of
the Deep Q-Network (DQN) algorithm utilizing dropout regularization, would
also be a possible technique. Modifying the Q-network further by adding batch
normalization layers [16] and analyzing their effect on learning in both the NFQ
and DQN settings could also be worthwhile.

In [36], more sophisticated techniques for sampling from an experience replay
memory are analyzed, and could be tested in this setting as well.

Actor-critic [44, Chapter 6] methods and advantage learning [2, 12, 46, 39]
would be another worthwhile direction in which to extend the RC-NFQ algo-
rithm. Additionally, Monte-Carlo tree search methods have recently been com-
bined with convolutional neural networks for control in TORCS [11] and Go [40]
and present a promising research direction.

6.2 Exploration Strategies

Improved exploration strategies beyond epsilon-greedy may help improve the
efficiency of learning.



A simple addition to the exploration strategy would be to implement soft-
max action selection rather than winner-take-all action selection based on the
estimated Q-values.

More complex additions would include the addition of an intrinsic motivation
function which rewards the agent for discovering novel states; in [5], the agent
was rewarded for discovering states that it did not yet know how to compress
well, with the intention of driving the compressor to improve its performance
over time, and by extension, to improve the ability of the controller to find a
more effective control policy.

In recent work [29], an approach to deep (temporally-extended) exploration
was applied to DQN and could also be extended to the RC-NFQ setting.

7 Conclusion

A brief overview of neural networks, reinforcement learning and the deep rein-
forcement learning paradigm was presented. This was followed by a summary
of two value-based methods, Neural Fitted Q Iteration (NFQ) and Deep Q-
Networks (DQN).

A detailed algorithm was then described implementing a novel extension
of NFQ called Regularized Convolutional Neural Fitted Q Iteration (RC-NFQ),
which adds convolutional neural networks and dropout regularization to the NFQ
algorithm along with several additional elements from the DQN algorithm.

Finally, several additional extensions were proposed to improve the learning
algorithm and exploration strategies.
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