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Abstract

We review the deep reinforcement learning setting, in which an agent receiving high-dimensional
input from an environment learns a control policy without supervision using multilayer neural
networks. We investigate two different approaches: neuroevolution for direct policy search, and
Neural Fitted Q Iteration for learning an action-value function. We reproduce some results
from an experiment by (Koutnik et al) where a policy is learned from pixels with the TORCS
race-car simulator. We then extend the Neural Fitted Q Iteration algorithm (Riedmiller et
al) by introducing a novel variation called Regularized Convolutional Neural Fitted Q Iteration
(RC-NFQ) that incorporates convolutional neural networks similarly to the Deep Q Network
algorithm (Mnih et al) and dropout regularization to improve generalization performance. Fi-
nally, we present preliminary results indicating learning progress when applied to a robot in a
real-world environment.
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Chapter 1

Neural Networks

1.1 Introduction

Neural networks are non-linear parametric statistical models. There are multiple supervised
and unsupervised learning algorithms associated with them. Learning multilayer neural net-
work models, also known as deep learning, involves choosing a model type and an architecture
for the model, and then learning suitable model parameters. While all such models consist of
directed graphs of artificial neurons, many specific higher-level regularities have been proposed
as building blocks. Examples include convolutional neural networks and recurrent neural net-
works, which are covered in a subsequent section. They are proposed in order to counteract the
combinatorial explosion of possible network configurations based on the following observations
about the domains operated upon in the natural world:

• The world contains many statistical regularities

• Similar patterns tend to appear in multiple regions of space and time

• Natural scenes have a hierarchical, compositional structure

The most common learning algorithm for neural networks is the backpropagation algo-
rithm [1] [2], which is a supervised learning method that uses labeled examples, and computes
the difference between the network’s output and the target output, and iteratively makes small
adjustments to the network until its predictions better match the labeled examples.

An excellent survey of the field is available in [3] containing an overview of each subfield,
along with historical developments and 888 references. A textbook, Deep Learning [4], is also
available.

1.2 Convolutional Neural Networks

Convolutional neural networks [2] [5] [6] [4, Chapter 9] are multi-layer perceptrons with partic-
ular constraints on their weights. They have demonstrated significant successes in recent years
in the field of computer vision [7]. They demonstrate some similarities to the human visual
cortex, although they also exhibit many differences [8] [9].

Within each layer there exists a set of feature detectors, each of which responds to the
presence of a particular pattern in an input tensor. Each feature detector is applied at multiple
locations in the input tensor. This application of identical feature detectors across the input
is referred to as weight sharing. At each location, the extent to which the feature is present is
calculated by the discrete convolution operator. To represent the information more compactly,
dimensionality reduction techniques which aim to extract the most relevant components are
utilized between layers; usually max pooling layers [2], which only consider the most prominent
feature within a particular location, or, more recently, strided convolutions [10], which spatially
separate the application of the feature detectors in such a way as to reduce the dimensionality
of the output by reducing the amount by which they overlap.
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1.3 Recurrent Neural Networks

Recurrent neural networks [1] [4, Chapter 10] are neural network models that contain cycles,
so that they are no longer directed acyclic graphs. They are applicable to problems that
involve sequential data; they represent the observation that regularities persist through time,
by implementing a weight sharing constraint that requires that parameters of the replicas
in time of each neuron be the same at each of the different time steps. As noted in [1] [4,
Section 10.1], for any recurrent neural network operation over a finite length of time, there
exists an equivalent feedforward network, by “unrolling” the network through time.

1.4 Neuroevolution

1.4.1 Overview

In neuroevolution, genetic algorithms are used to optimize the parameters of a neural net-
work [11] [12]. Because of this, in contrast to backpropagation, neuroevolution is not a gradient-
based learning algorithm. For an overview of the field, see [3, Section 6.6]. There are three
general classes of neuroevolution: the optimization of the structure of a neural network, the
optimization of the weights given a predefined structure, or the optimization of a separate
network which is used to generate the solution network through some type of transformation.
In our case, we study the second of these methods: the use of genetic algorithms to learn the
connection weights of a neural network.

1.4.2 Genetic Algorithms

Genetic algorithms [13] [14] are a class of optimization methods which use techniques that
were originally inspired by the process of evolutionary natural selection. They consist of a
framework in which a population of candidate solutions is evolved over multiple generations.
A population consists of a set of candidate solutions. A candidate solution is defined the same
way as in traditional optimization. The process of evolution involves the steps of selection,
crossover and mutation. We review the algorithm for neuroevolution, a particular application
of genetic algorithms, in Section 4.2.

1.5 Gradient Descent Algorithms

Gradient descent in neural networks is an optimization method that aims to minimize an
objective function J(θ) parameterized by the parameter vector θ of a neural network, by
iteratively updating a candidate solution based on the local gradient ∇θJ(θ) of the function
to be optimized with regards to its parameters, evaluated on some training examples. The
solution is updated by taking steps in the opposite direction of the gradient. The magnitude
of each update is controlled by a learning rate η.

In full-batch gradient descent, all of the training examples are used to compute the gradient
at each step. A variant, called stochastic gradient descent, uses a single training example at
each step. There is yet another variant, called mini-batch gradient descent, which lies between
these two concepts and is the most commonly used. It uses a subset of the training examples
at each step to compute the gradient, which can lead to faster convergence behavior.

There exist more sophisticated gradient descent algorithms that aim to adaptively change
the learning rate on a per parameter basis as the optimization proceeds. One of these algo-
rithms, which we will use in this work, is RMSprop [15] which is a mini-batch varient of the
Rprop [16] batch gradient descent algorithm. Other common alternatives are Adagrad [17],
Adadelta [18] and Adam [19].
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Chapter 2

Reinforcement Learning

2.1 Introduction

Reinforcement learning [20] [21, Section 3] is a general framework for the problem of an agent
embedded in an unknown environment that learns a behavior policy that maximizes a reward
function. The standard reference for the field is [20], and a survey of recent techniques is found
in [22]. Under the reinforcement learning paradigm, an agent sends actions to an environment,
and receives observations and rewards in response.

Reinforcement learning belongs to the fields of machine learning and artificial intelligence.
For a survey of definitions of artificial intelligence, see [21]. For a broad view of artificial
intelligence in general, see [23]. For a universal theory of optimal artificial intelligence and
reinforcement learning, refer to [24] and [25].

As a general framework, there are many specific methods that can be described within the
reinforcement learning setting. Unsupervised learning methods can also be considered part of
reinforcement learning when they are employed by the agent to improve its ability to achieve
rewards. For a survey of unsupervised learning applied in this context, see [3, Section 6.4].

The most common formalism used to describe this setting involves the agent observing
a state s and taking an action a, and the environment responding with a reward signal r
along with a subsequent state s′. This agent-environment interaction is then repeated through
time, defining a sequence of experience tuples (s, a, r, s′) which can be used as input to various
reinforcement learning algorithms.

If the environment is fully observable, then the observation at a particular time corresponds
to the exact configuration of the environment; in more complex problems, the environment
may only be partially observable, in which case the agent only has access to a particular subset
of the true state of the environment through its observations.

The policy of an agent represents how the agent behaves, conditional on its observations of
the environment and the state of its internal memory. There are many ways that a policy can
be represented. It can be as simple as a lookup table, which is equivalent to a reflex agent [23]
in artificial intelligence. Alternatively, the agent can parameterize its policy in some way, so
that its responses become a more complex function of the state of the environment and its
internal state.

A further distinction is made between model-based reinforcement learning, in which an
agent learns an explicit model of the conditional transition probabilities P (s′|s, a) of the envi-
ronment, and model-free reinforcement learning, in which an agent does not explicitly model
the environment. There are two major approaches within the model-free reinforcement learning
setting: direct policy search methods and value-based methods, both of which we cover below.

2.2 Exploration and Exploitation

An important tradeoff in reinforcement learning exists between the exploitation of current
estimates to increase immediate reward and further exploration of the environment to improve
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the likelihood of future reward through improved accuracy. This is commonly referred to as
the exploration versus exploitation tradeoff [20, Chapter 1].

2.3 Function Approximation

The simplest category of reinforcement learning problems are the tabular case, in which each
state is explicitly defined, and state-specific values are learned. This corresponds to an explicit
representation in the form of a lookup table with an entry for every single state. In all but the
simplest domains, this approach is not practically feasible, due to the size of the state space.

As a result, function approximators are used to generalize from specific states into more
abstract state representations. The concept of function approximation is related to the concepts
of regularization and generalization in statistics, and compression in information theory. In
general, a function approximator takes as input a high-dimensional state, and maps it to a
lower dimensional representation. Both linear and non-linear function approximation methods
are studied. Neural networks are a particular instance of non-linear function approximators.

2.4 Direct Policy Search

In direct policy search, the space of possible policies is searched directly. The agent does not
attempt to model the transition dynamics of the environment, nor does it attempt to explicitly
learn the value of different states or actions. Instead, it iteratively attempts to improve a
parameterized policy. When function approximation is used, direct policy search is related to
approximate policy iteration.

Direct policy search can be broken down into gradient-based methods, also known as policy
gradient methods, and methods that do not rely on the gradient. In policy gradient methods,
often the gradient is not explicitly known and must approximated via sampling from the
environment. An example of these methods is the REINFORCE algorithm [26]. Gradient-free
methods include evolutionary algorithms, which were introduced previously. We will describe
one of these algorithms in detail in section 4.2. A survey on policy search and applications to
robotics is [27].

2.5 Value-Based Methods

In value-based reinforcement learning methods, an agent learns the expected reward r condi-
tioned on a particular action a in a certain state s. This defines a function which is called the
action-value function.

A central theme in many reinforcement learning algorithms is temporal-difference (TD)
learning. In value-based TD learning, an approximation of the action-value function is used as
an initial estimate and is compared to sample returns obtained from the environment. Iterative
updates are then made based on the observed error, called the TD error. This is an example
of bootstrapping.

A distinction is made between on-policy and off-policy reinforcement learning algorithms.
On-policy algorithms learn the value of the policy that is actually carried out by an agent,
which includes exploration steps that it may take, whereas off-policy algorithms learn the
value of an optimal policy that is independent of the actual policy being followed.

2.5.1 Q-learning

Q-learning [28] is a commonly used off-policy value-based reinforcement learning algorithm.
We define the action-value function as Q(s, a) and define an iterative update procedure called
one-step Q-learning [20, Chapter 6] as follows:

Qt+1(st, at)← Qt(st, at) + α
(
rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
6



where α is a learning-rate parameter, and γ is a parameter that discounts the value of future
rewards versus present rewards.
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Chapter 3

Reinforcement Learning with
Neural Networks

3.1 Introduction

As mentioned previously, neural networks can be used as non-linear function approximators.
They are well suited to problems where the state space is high-dimensional, due to their
frequent ability to effectively learn to detect and exploit patterns in complex domains. The use
of neural networks to compress a high-dimensional state space into a compact representation
that is used to learn a control policy by a reinforcement learning algorithm is also referred to
as deep reinforcement learning.

We begin with the neuroevolution direct policy search method, followed by a discussion of
two value-based methods and comments on regularization in neural network based reinforce-
ment learning.

3.2 Neuroevolution

As discussed in Section 1, neural networks can be applied to reinforcement learning as a
policy search method, by representing the controller as a neural network and optimizing the
parameters of the controller using a genetic algorithm.

3.3 Neural Fitted Q Iteration

In batch reinforcement learning [22, Chapter 2], a sequence of samples is collected from the
environment in order to perform batch learning. Using a neural network function approximator
with batch learning led to the Neural Fitted Q-Iteration (NFQ) algorithm, which is described
in detail in [29] and is an extension of experience replay methods [30]. A practical guide to
applying the algorithm is provided in [31].

3.4 Deep Q-Networks

While NFQ is a batch reinforcement learning method, it is also possible to construct an online
algorithm for Q-learning using neural networks. Furthermore, a convolutional neural network
for compressing high-dimensional input images can be integrated into the overall network that
approximates the action-value function. These are the main extensions used in the Deep Q-
Network [32] [33] (DQN) algorithm. Furthermore, this algorithm introduces the notion of a
separate target network that increases the stability of online reinforcement learning with neural
networks by reducing correlations between updates to the parameters and the targets used to
calculate those updates.
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3.5 Regularization

Regularization in machine learning consists of any method which aims to decrease the gener-
alization error of a model without decreasing the training error [4, Chapter 5].

Regularization techniques have been studied extensively in machine learning in general,
but have received less attention within the reinforcement learning literature. Recent work
includes [34] and [35]. An excellent overview of the generalization ability of neural network
models grounded in Solomonoff’s algorithmic probability [36] and Kolmogorov complexity [37]
is presented in [38]. Dropout [39] has been found to be a simple and effective regularization
method for neural networks.

In [40], it is mentioned that combining regularization with NFQ can be problematic when
there is a minimal amount of training data, as it can cause samples with low frequency to be
regularized away despite carrying valuable information.

Regularization is also applied in autoencoder [4, Chapter 14] neural network models, in
particular in denoising autoencoders and sparse autoencoders, which can be used to compress
the input to reinforcement learning algorithms.

The original NFQ and DQN algorithms do not incorporate regularization into their neural
network models. In Chapter 8, we consider the effect of adding dropout regularization to an
algorithm derived from these techniques.
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Chapter 4

Algorithms

4.1 Introduction

In this chapter, we present the NEUROEVOLUTION algorithm for gradient-free training of
neural networks, along with an algorithm that utilizes NEUROEVOLUTION for direct policy
search called POLICY-SEARCH-NEUROEVOLUTION. We will apply these algorithms to
a deep reinforcement learning experiment in Chapter 7.

Finally, we introduce an algorithm that combines ideas from the Neural Fitted Q-Iteration
and Deep Q-Network algorithms and adds dropout regularization, resulting in a novel variation
called the Regularized Convolutional Neural Fitted Q-Iteration (RC-NFQ) algorithm. We will
apply this algorithm to a deep reinforcement learning experiment in Chapter 8.

4.2 Direct Policy Search using Neuroevolution

The procedure for NEUROEVOLUTION is listed in Algorithm 1. The procedure takes as
arguments a parameter vector θ corresponding to a parameterization of a particular neural
network architecture chosen for the application, an objective function J and a set of hyper-
parameters. The hyperparameters are described in Table 4.1. They influence the distribution
of the initial population and the behavior of the selection, crossover and mutation operations
during evolution.

In the initial step of the algorithm, a population of individual candidates of size α0 is
constructed which have the shape of θ and are drawn from a Gaussian distribution with mean
µ0 and variance σ0. Within the main loop of the algorithm, several functions are called which
perform the operations of the genetic algorithm, each of which we describe next.

First, the APPLY-TOURNAMENT-SELECTION function applies the tournament se-
lection algorithm [41] to select a batch of individuals from P which will pass to the next step
of the algorithm. It conducts α0 tournaments, where each tournament compares the fitness
of α1 individuals sampled randomly with replacement from P and chooses the individual with
the highest fitness. Subsequently, with probability α2 for each consecutive pair of individuals
which were selected, the APPLY-TWO-POINT-CROSSOVER function selects a starting
and ending position and swaps the parameters in the corresponding portion of the parameter
vector for the first individual with the corresponding portion of the parameter vector for the
second individual. Next, in the APPLY-GAUSSIAN-MUTATION function, each entry in
each individual parameter vector is replaced with probability α3 with a number drawn from a
Gaussian distribution with mean µ1 and variance σ1, resulting in the individuals for the next
generation of the population. The fitness of these individuals is then evaluated in parallel by
EVALUATE-FITNESS-PARALLEL, which evaluates each individual using the objective
function J , potentially across multiple processors simultaneously.

Building on NEUROEVOLUTION, POLICY-SEARCH-NEUROEVOLUTION is pre-
sented in Algorithm 2. This procedure uses NEUROEVOLUTION to directly search the
space of control policies in an environment E, where the control policy R is a parameterized
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recurrent neural network, and the inputs to the control policy come from a previously trained
convolutional neural network C which serves as a function approximator. The objective func-
tion J used for fitness evaluation consists of evaluating the effectiveness of the current policy R
by evaluating it in the environment E using the fixed compressor C. The process of evaluating
intermediate policies in the environment is referred to as policy evaluation.

Algorithm 1 Optimize the parameters of a neural network using a genetic algorithm

Input:
J is an objective function
θ is a parameter vector for the neural network which will be optimized
hyperparameters, described in Table 4.1

Output:
Returns the parameters θ for the neural network from the best performing candidate

1: procedure NEUROEVOLUTION(θ, J, hyperparameters)
2: µ, σ, α← hyperparameters
3: Initialize population P consisting of individuals with a shape of θ drawn from a multi-

dimensional gaussian distribution with parameters µ0, σ0, α0

4: while within computational budget do
5: P ← APPLY-TOURNAMENT-SELECTION(P, α1)
6: P ← APPLY-TWO-POINT-CROSSOVER(P, α2)
7: P ← APPLY-GAUSSIAN-MUTATION(P, µ1, σ1, α3)
8: Ji ← EVALUATE-FITNESS-PARALLEL(J, P )
9: end while

10: Assign the parameters from the fittest individual Pbest to θ
11: return θ
12: end procedure

Table 4.1: Hyperparameters for the NEUROEVOLUTION algorithm

Hyperparameter Applies to Purpose
µ0, σ0 initial population mean and variance for each entry
α0 initial population population size
α1 tournament selection tournament size
α2 two-point crossover crossover probability
µ1 gaussian mutation mutation mean
σ1 gaussian mutation mutation variance
α3 gaussian mutation mutation probability
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Algorithm 2 Find the weights for a recurrent neural network that correspond to an optimal
policy

Input:
E is an environment, which specifies the space of states, actions and rewards
C is a trained convolutional neural network used for compression in environment E
R is an un-trained recurrent neural network used for control in environment E
hyperparameters, identical to those described in Table 4.1

Output:
Returns a trained recurrent neural network R that defines a policy under E and C

1: procedure POLICY-SEARCH-NEUROEVOLUTION(E,C,R, hyperparameters)
2: Let θ denote the parameter vector associated with R
3: Let J denote a policy evaluation function which evaluates a controller R which is being

learned with respect to a fixed compressor C and an environment E
4: θ∗ ← NEUROEVOLUTION(θ, J, hyperparameters)
5: Use θ∗ to update the parameters of R
6: return R
7: end procedure

4.3 Convolutional Neural Fitted Q Iteration

The Regularized Convolutional Neural Fitted Q Iteration (RC-NFQ) procedure is illustrated
in Algorithm 3. The hyperparameters for the algorithm are described in Table 4.2. In addition
to the hyperparameters, a suitable choice of architecture for the convolutional neural network
that will serve both as a function approximator and to learn the action-value function must be
selected. An example of such an architecture is presented in Chapter 8.
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Algorithm 3 Estimate the action-value function using a convolutional neural network with
dropout regularization

Input:
E is an environment, which specifies the space of states, actions and rewards
C is an architecture for a convolutional neural network with dropout regularization layers
hyperparameters, described in Table 4.2

Output:
Returns a learned action-value function Q

1: procedure RC-NFQ(E,C, hyperparameters)
2: Parameterize identical convolutional neural network models Q0 and Q̂0 which will be

used to learn to approximate the action-value function, using the architecture specified in
C and the dropout probability αdrop for the dropout regularization layers

3: Initialize action-value function Q0 with a parameter vector θ of random initial weights
4: Initialize target action-value function Q̂0 with θ− = θ
5: Initialize experience replay buffer D
6: for episode i = 0, αeps do

7: Initialize temporary experience buffer D̃
8: for t = 1, αlen do
9: Select random action with probability ε

10: Otherwise, select action a that maximizes the action-value function Qi(s, a)
11: Execute action a in environment E and observe r and s′

12: Store transition (s, a, r, s′) in D̃
13: end for
14: Append D̃ to the experience replay buffer D
15: for iteration k = 0, αiters do
16: Sample random batch of αsamples from D and store in D′

17: Generate a pattern set of training targets where yi = D′r + γQ̂i(D
′s′ , D′a)

18: Call RMSprop with learning rate αlr to perform gradient descent on
(yi −Qi (D′s, D′a; θ))

2
and store the updated parameters in Qi+1

19: if k is a multiple of αfreq then

20: Update target action-value function Q̂i+1 with the parameters from Qi
21: else
22: Copy the parameters from Q̂i to Q̂i+1

23: end if
24: end for
25: end for
26: return Qαeps

27: end procedure

Table 4.2: Hyperparameters for the RC-NFQ algorithm

Hyperparameter Description
γ discount factor for future rewards
αlr learning rate for RMSprop
αfreq frequency at which the target Q-network is updated
αiters number of iterations of fitted Q-iteration to run between episodes
αlen length of each episode
αeps number of episodes

αsamples number of samples to use within each iteration of fitted Q-iteration
αdrop dropout probability for the dropout regularization layers
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Chapter 5

A Simulated Race Car
Environment

5.1 Summary

We implement a customized version of the TORCS race-car simulation software [42] as a
simulation environment suitable for deep reinforcement learning. It implements a physics
simulator and game engine for race cars on customizable race tracks. In the past, it has been
used for many artificial intelligence competitions [43] based on high-level features such as car
velocity and rangefinder measurements. We implement modifications to the software in order
to allow the raw high-dimensional pixel data from the driver perspective to be used for control.
Prior work using TORCS as a testbed for high-dimensional control from pixels started in 2013,
from two research groups: IDSIA [44, 45, 46] and Google DeepMind [47, 48].

5.2 Environment Description

The environment consists of a race track with a user-definable layout and surroundings. The
learning task is to learn a control policy using the raw high-dimensional pixel input from
the driver’s perspective, shown in Figure 5.1a, as input. We apply an initial dimensionality
reduction step, also used in [46], in order to reduce the computational cost for the learning al-
gorithms. This extracts the luminance channel, producing a grayscale image, and downsamples
the image to 64x64 pixels, as shown in Figure 5.1b.

We recreate the custom track configurations used in [46], shown in Figure 5.2. The tracks
are configured to be mirror images of each other; they are identical in every way except that all
left and right turns are exchanged with each other with respect to the starting line. The purpose
of constructing two training tracks in this manner is to discourage systems from memorizing
the configuration of their training track without learning to generalize and take advantage of
the input state for their control policy.

The controller sends an action to the environment which consists of a real-valued steering
angle and a real-valued acceleration quantity. Hence the problem consists of learning a control
policy π that maps a continuous state space S ∈ R64×64 to a continuous action space A ∈ R2

in order to maximize a scalar reward signal R.
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(a) Before downsampling (b) Grayscale, after downsampling

Figure 5.1: Sample input images from the TORCS race-car simulator.

(a) Initial track

(b) Mirror image of initial track

Figure 5.2: Custom race tracks used for training.
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5.3 Modifications to the simulator

The default TORCS simulator [42] with the competition extensions [43] does not support
using the raw high-dimensional pixel data for control, and the modified implementations used
in prior research are not publicly available.

As a result, we implemented several significant modifications to the TORCS codebase to
support the experiment.

5.3.1 Features introduced

• Stream the raw pixel video frames from the agent using the ZeroMQ [49] messaging
framework

• Allow multiple racing servers to run in parallel

• Allow the simulator to be started and terminated automatically from Python

• Disable the “Ready-Set-Go” start screen message

• Start the car exactly at the starting line

• Allow the race track to be chosen programmatically

• Allow rendering when the window is not in focus
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Chapter 6

A Robotic Car Testbed

6.1 Summary

We also designed our own testbed for deep reinforcement learning experiments applied to
robotics. The testbed consists of a wheeled robot on a racetrack, equipped with a camera
and an on-board computer connected to a server over a wireless network for control. In this
section, we will describe the architecture of the robot and its accompanying vision system,
the environment, and the server, along with a formal description in the reinforcement learning
setting.

6.2 Robot Description

The robot is based on a customized version of the LEGO Mindstorms EV3 platform. It is
equipped with four large servo motors, attached to each wheel. It has a custom firmware
running the ev3dev programming interface. A color sensor is mounted on the bottom, and a
bumper sensor is mounted to the front, which are used for calculating the reward signal, but
are not used for control. It also has a Raspberry Pi Camera and a Raspberry Pi on-board
computer which are used to capture the raw video inputs used for control. Both of the on-
board computers are connected via a wireless network to the server. Video is streamed using
the ZeroMQ messaging framework.

6.3 Server Description

The server implements the learning algorithms and is connected to the robot by a wireless
network.

6.4 Environment Description

The environment consists of a 48-inch by 72-inch white surface, with surrounding walls and
inner walls, which defines a racetrack shape. The racetrack surface has a thick middle stripe,
and on the inner side has a thin stripe and a series of angled markers.

A series of yellow and red marker lines are placed at regular intervals along the racetrack.
These marker lines are detected by the on-board color sensor in order to compute a reward
signal that indicates progress along the racetrack.
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(a) The robot, a customized version of
the LEGO Mindstorms EV3 platform.

(b) The robot race track environment.

Figure 6.1: The robot and its environment.

6.5 Reward Signal

A finite state machine monitors detection of the yellow and red marker lines. If they are
detected in the order “yellow, red” then a positive reward of +5 is administered. If they are
detected in the order “red, yellow” then a negative reward of −0.1 is administered.

The front bumper sensor administers a negative reward of −2 when triggered. Driving in
reverse is penalized by a negative reward of −1 per timestep.

6.6 Control Loop

The robot runs a continuous control loop. Within this loop, time is discretized by incrementing
the time step every 5 iterations, at which point a reward and a new state are generated. Between
time steps, the previous action is maintained. The reward and new state are passed to the
server, which returns an action. Hence, the interaction between the robot and the server can
be defined in terms of (s, a, r, s′) tuples.

6.7 State Definitions

The state is defined by the high-dimensional visual input from the robot camera. Video is
captured on the robot at 30 frames per second with 64x64 pixel resolution. When it is received
by the server, it is converted to grayscale and sampled once per time step, which is used as the
state representation. Hence, the robot operates in a continuous state space of S ∈ R64×64.
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Figure 6.2: View from the robot camera as it turns right.

6.8 Action Definitions

The action space is defined as a discrete mapping to robot motor torques from the action set
a ∈ {forward, backward, left, right}. Hence, the robot has a discrete action space with n = 4
possible actions.
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Chapter 7

Experiment: Direct Policy
Search using Neuroevolution

7.1 Summary

We apply POLICY-SEARCH-NEUROEVOLUTION as described in Algorithm 2 to the
TORCS simulated race car environment described in Chapter 5. We reproduce parts of the
experiment presented in [46] and analyze the learning problem and methods presented in that
study.

The convolutional neural network and the recurrent neural network were implemented using
the Keras [50] deep learning library. The evolutionary algorithms were implemented using the
DEAP [51] framework for distributed evolutionary algorithms.

7.2 Convolutional Neural Network

We use a convolutional neural network to compress the high-dimensional input signal into a
low-dimensional representation that will be fed into the recurrent neural network, which will
then learn a control policy based on that low-dimensional signal.

We reproduce the architecture described in [46]. The architecture is pictured in Figure 7.1,
and the detailed configuration of each layer is specified in Table 7.1.

In order to generate a training set, we used a built-in car controller to drive the car around
each of the two tracks while capturing images. We then selected 20 images from each of the
two tracks that were representative of different viewpoints and features that were encountered,
in order to form a training set of 40 images.

We then optimized the parameters of the network using neuroevolution, described in Algo-
rithm 1. As illustrated in Table 7.1, the network has a total of 993 parameters. The objective
function was designed to maximize the ability of the network to discriminate between the
training images.

Let φ(Di) denote the output feature vector computed by the convolutional neural network
given an input image Di. We maximized the sums of the average and minimum pairwise
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Figure 7.1: Architecture of the convolutional neural network.
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Table 7.1: Convolutional neural network configuration

Layer Input Output Filter Width Filters Stride Parameters
Convolutional 1 (1, 64, 64) (10, 63, 63) 2 10 (1, 1) 50

ReLU 1 (10, 63, 63) (10, 63, 63) - - - -
Max Pooling 1 (10, 63, 63) (10, 21, 21) 3 - - -
Convolutional 2 (10, 21, 21) (10, 20, 20) 2 10 (1, 1) 410

ReLU 2 (10, 20, 20) (10, 20, 20) - - - -
Max Pooling 2 (10, 20, 20) (10, 10, 10) 2 - - -
Convolutional 3 (10, 10, 10) (10, 9, 9) 2 10 (1, 1) 410

ReLU 3 (10, 9, 9) (10, 9, 9) - - - -
Max Pooling 3 (10, 9, 9) (10, 3, 3) 3 - - -
Convolutional 4 (10, 3, 3) (3, 2, 2) 2 3 (1, 1) 123

ReLU 4 (3, 2, 2) (3, 2, 2) - - - -
Max Pooling 4 (3, 2, 2) (3, 1, 1) 2 - - -

euclidean distances between output features φi and φj ,∀(Di,Dj)|Di 6= Dj computed from the
set of input images D. Hence, the optimization problem was to find the parameters θ for the
convolutional neural network that satisfied

max
θ

(
1

|D|
∑

(φi,φj)

‖φi − φj‖+ min
(φi,φj)

‖φi − φj‖

)
.

7.3 Recurrent Neural Network

The recurrent neural network used as a controller is a simple RNN, also known as an Elman
network [52]. It receives an input vector of length 3 from the output of the convolutional
neural network. The input passes through a hidden layer with 3 nodes, which is connected to
an output layer which also consists of 3 nodes. The total number of trainable parameters is
33.

7.4 Control Signal

The TORCS simulator runs at a frequency of one time step per 0.022 seconds. In the exper-
iments, we utilize a control frequency of 5 Hz; between control signals, the previous action is
repeated.

The purpose of the RNN is to learn a control policy to drive the car. Since the car accepts
an action vector A ∈ R2, it is necessary to transform the output of the RNN to produce a
suitable control signal. This is accomplished as in [46] by generating the steering signal from
the mean of the first and second output nodes, and the acceleration signal from the third output
node. The steering signal is clipped to keep it within the range [−1, 1] and the acceleration
signal is clipped to keep it within the range [0, 1]. We note that it may be feasible to slightly
modify the RNN architecture that was used so that only two output nodes are needed, with
one of them directly mapped to the acceleration signal. However, we chose to utilize the same
architecture as [46] for comparison purposes.

The difficulty of the learning problem was also reduced by imposing a velocity limit on the
car of 10 kilometers per hour. We note that [48] also studied a “slow car” setting, in addition
to a “fast car” setting.

7.5 Objective Function

The fitness was calculated as in [46]. The agent was rewarded for traveling a large distance along
the race track in the correct direction. In addition, it was rewarded slightly for increasing its
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maximum velocity, and was penalized slightly for collisions and for high variance in its control
signals. The objective function used was

distance− 0.003 · damage+ 0.2 ·max velocity − 100 · c

where distance corresponds to the distance traveled along the race track, damage corresponds
to the collision signals generated by the simulator if the car collides with the walls, max velocity
corresponds to the maximum velocity attained during a trial, and c corresponds to the cumu-
lative differences in successive control signals.

Each fitness evaluation consisted of evaluating the candidate controller on the two test
tracks described in Section 5.2 for 500 time steps, or approximately 11 seconds of simulated
time. The fitness of each of the two races was recorded, and the minimum fitness was reported
as the fitness of the candidate. By requiring the candidate to perform well on both the first
track and its mirror image, the training procedure aims to discourage the learning algorithm
from simply memorizing the training track without using input images to discriminate between
track conditions.

7.6 Results

7.6.1 Convolutional Neural Network

We trained the convolutional neural network using the NEUROEVOLUTION algorithm.
We used a population size of 100, a crossover probability of 0.5 with two-point crossover,
and tournament selection with a tournament size of 10. We compared the performance over
different choices of the mutation probability hyperparameter from the following set:

{0.05, 0.10, 0.20, 0.30, 0.40, 0.50} .

Mutations were applied with a probability of 0.05 to each element of individuals chosen for
mutation from a gaussian distribution with mean 0 and standard deviation 1.5.

For each choice of mutation probability, the maximum fitness achieved per generation is
illustrated in Figure 7.2a, and the mean fitness achieved is illustrated in Figure 7.2b. The
maximum fitness was 1.30, achieved with a mutation probability of 0.20.

The evolution of the feature vectors corresponding to this maximum fitness is presented
in Figure 7.3. The initial features are clustered together and progressively become better
separated as the number of generations increases.

7.6.2 Recurrent Neural Network

We trained the recurrent neural network controller in the TORCS environment using the
POLICY-SEARCH-NEUROEVOLUTION algorithm. We used a population size of 96, a
crossover probability of 0.5 with two-point crossover, and tournament selection.

(a) Maximum fitness (b) Mean fitness

Figure 7.2: Fitness per generation by mutation probability.
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(a) Random initial weights (b) Generation #1 (c) Generation #2

(d) Generation #4 (e) Generation #16 (f) Generation #100

Figure 7.3: Feature vectors produced as evolution advances and higher fitness parameter set-
tings for the convolutional neural network are found, better separating the input images in
feature space.

Training was conducted for 100 generations for each choice of hyperparameters. By par-
allelizing the fitness evaluation function using the extensions to the TORCS framework that
we implemented, we were able to evaluate 12 candidate solutions simultaneously across each
of the CPU cores on the server. Each experiment ran for approximately 3 hours.

We compared performance across two different hyperparameters: the mutation probability
was chosen from the set {0.02, 0.20}, and the tournament size was chosen from the set {2, 10}.
The results are shown in Figure 7.4.

The best solution found had a fitness of 330.7, with a mutation probability of 0.20 and a
tournament size of 10. The best solution was found after 39 generations, although a solution
that was nearly as good with fitness of 330.1 was found much earlier at generation 12.

The second best solution found had a fitness of 319.7, with a mutation probability of 0.02
and a tournament size of 2. By generation 10, it had reached a fitness of 283.1. After that
point, there were a large number of incremental improvements in maximum fitness, more so
than in any other trial. It is also notable that the average fitness gradually began to approach
the maximum fitness over time.

With a mutation probability of 0.02 and a tournament size of 10, a slightly lower maximum
fitness was achieved, and the average fitness did not approach the maximum fitness. The worst
result came from a mutation probability of 0.20 and a tournament size of 2; in that case, al-
though a solution with a fitness of 308.3 was found early at generation 8, the population rapidly
degraded to hugely suboptimal solutions, falling to a maximum fitness of 78.7 at generation
23, and never increasing again.
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(a) Mutation probability of 0.02, tournament size
of 2. Maximum fitness of 319.7 at generation 91.

(b) Mutation probability of 0.02, tournament size
of 10. Maximum fitness of 290.0 at generation 45.

(c) Mutation probability of 0.20, tournament size
of 2. Maximum fitness of 308.3 at generation 8.
Maximum fitness degrades afterwards.

(d) Mutation probability of 0.20, tournament size
of 10. Maximum fitness of 330.7 at generation 39.

Figure 7.4: Comparison of different hyperparameter choices for evolving the recurrent neural
network controller.

7.7 Analysis

The training procedure produced a control policy that was able to successfully navigate the
car through the turns encountered within the tested time duration on the two tracks.

The NEUROEVOLUTION training procedure and objective function of maximizing dis-
crimination between training images for the convolutional neural network was very simple, but
yielded features that were sufficient for effectively learning a control policy.

It is notable that most of the different choices of mutation probability when evolving the
convolutional neural network rapidly arrived at a solution near the best solution found. We
can also observe that, for higher mutation probabilities, the mean fitness of the population
tends to remain lower.

In training the recurrent neural network, the high mutation probability in the configuration
illustrated in Figure 7.4c is likely the reason that the average fitness remained significantly
below the maximum fitness for all of the remaining episodes in that trial.

Overall, we found that the POLICY-SEARCH-NEUROEVOLUTION algorithm was
fairly robust to the different choices of hyperparameters that we tested, with 3 out of the 4
choices producing reasonably good results.

In all the cases, the algorithm was able to find a fairly good solution with a fitness above
250 within 10 generations. The most promising choice of hyperparameters appears to be a
mutation probability of 0.02 and a tournament size of 2. This corresponded to a maximum
fitness curve that rapidly reached a good level of performance, and then consistently found
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incremental improvements over the duration of the experiment. Furthermore, the average
fitness gradually converged towards the maximum fitness.

In that configuration, the mutation probability is somewhat low, which allows promising
configurations to be more stable with less risk of changing due to mutation. The choice of
a tournament size of 2 allows greater diversity to persist in the population, since each round
of tournament selection will randomly choose two individuals to compete in the tournament,
allowing a greater probability of survival for any particular individual. These two factors
correspond to the exploration versus exploitation tradeoff mentioned in Section 2.

These results were achieved using a standard genetic algorithm with two-point crossover,
while in [46] the more complex CoSyNE [53] algorithm was used.
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Chapter 8

Experiment: Regularized
Convolutional Neural Fitted Q
Iteration

8.1 Summary

In this experiment, we apply the Regularized Convolutional Neural Fitted Q Iteration algorithm
(RC-NFQ) to a robotic car that receives raw pixels from a video camera as input, described in
detail in Chapter 6. The objective is to learn a driving policy in a racetrack environment. We
also consider the effects of dropout regularization and the choice of learning rates on Q-value
learning and demonstrate initial steps towards learning an effective control policy.

During training, we use an epsilon-greedy exploration strategy [20], in which the robot
follows its current estimate of an optimal policy at each time step with probability (1− ε) and
selects a random action with probability ε. The value of ε was annealed over the four training
episodes according to a schedule of ε ∈ (1.0, 0.5, 0.5, 0.2). Using epsilon-greedy exploration is
meant to encourage the robot to explore the state space, and also has the effect of perturbing
the robot if it gets stuck in a suboptimal state that it believes is optimal.

The neural network was implemented using the Keras [50] deep learning library. The
modified fitted Q iteration algorithm was implemented from scratch. The server uses an Intel
i7-4930K processor with 32GB of RAM and an Nvidia Titan X graphics processing unit with
12GB of RAM.

8.2 Q-network

We use a convolutional neural network to compress the input images from the video camera.
The convolutional layers are similar to those used in [32] and [48] with several modifications.
The state input consists of only one input image, and the action is also fed as input, encoded
as a one-hot vector. We add dropout layers after the first and second convolutional layers, and
after the first fully connected layer. The dropout probability used is p = 0.25. The details of
the convolutional neural network are shown in Table 8.1, and the architecture of the Q-network
is shown in Table 8.2.

The total number of parameters to be trained is 305713. We train the network using
RMSprop.
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Table 8.1: Convolutional neural network architecture

Layer Input Output Filter Width Filters Stride Parameters
Convolutional 1 (1, 64, 64) (16, 15, 15) 8 16 (4, 4) 1040

Activation 1 (16, 15, 15) (16, 15, 15) - - - -
Dropout 1 (16, 15, 15) (16, 15, 15) - - - -

Convolutional 2 (16, 15, 15) (32, 6, 6) 4 32 (2, 2) 8224
Activation 2 (32, 6, 6) (32, 6, 6) - - - -
Dropout 2 (32, 6, 6) (32, 6, 6) - - - -

Flatten (32, 6, 6) (1152) - - - -

Table 8.2: Q-network architecture

Layer Input Output Parameters
ConvNet (1, 64, 64) (1152) 9264

Action Input (4) (4) -
Merge (1152) and (4) (1156) -

Dense 1 (1156) (256) 296192
Activation (256) (256) -
Dropout (256) (256) -
Dense 2 (256) (1) 257

8.3 Results

8.3.1 Training

We divide the data collection on the robot into four episodes. The data from each episode
forms a batch for training. Each batch consists of 5000 time steps, and the data is split into
90% training and 10% validation sets.

After the first episode, we run the NFQ algorithm for 1000 iterations, with a learning rate
of η = 10−3 using full-batch RMSprop. The results are illustrated in Figure 8.1 with the best
validation loss highlighted. The results of subsequent training batches are discussed in the
next section along with an analysis of various hyperparameters.
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(a) Training loss marked in blue; validation loss
marked in green; lowest validation loss high-
lighted in yellow. The target network was up-
dated every 200 iterations.

(b) Enlarged region showing the validation loss
only. The last iterations before target network
updates are marked in green, and the first itera-
tions after the updates are marked in red. Lowest
validation loss highlighted in yellow.

Figure 8.1: Illustration of NFQ training and validation loss between target network updates,
during the first batch of training.

8.3.2 Comparing gradient descent hyperparameters

For the second batch of fitted Q iteration, we begin by running a preliminary batch in which we
compare the effect of different learning rates η and the choice of mini-batch versus full-batch
training on the learning curves for the RMSprop optimizer. Fitted Q iteration is performed with
a separate target network updated every 200 epochs. The results are illustrated in Figure 8.2.

As shown in Table 8.3, the best validation loss achieved was 1.00, and the range of best
validation losses was between 1.00 and 1.07. Hence, the choice of parameters did not have
a very large effect on the ability to find a low validation loss at some point during training.
However, if we compare the learning curves in Figure 8.2 by examining the validation set loss
over time, we will note significant differences between the hyperparameter choices.

Table 8.3: Best validation loss compared for different RMSprop hyperparameters after the
preliminary run of the second training batch.

Learning Rate Full-batch Mini-batch
10−3 1.07 1.06

2.5× 10−4 1.03 1.06
10−4 1.03 1.05

2.5× 10−5 1.00 1.07

The smoothest validation set learning curve was obtained with an RMSprop learning rate
of η = 2.5× 10−5, which reached a validation loss of 1.07 at epoch number 396.

We then used the η = 2.5× 10−5 learning rate and applied it using fitted Q iteration with
the target network updated less frequently, every 400 epochs, and ran the optimizer for 1650
epochs in total. The batch was run by starting with the result of the first batch, in order
to produce an updated result for the second batch. Mini-batch and full-batch updates are
compared in Figure 8.3. For full-batch, the best validation loss was 1.05 at epoch 759. For
mini-batch, the best validation loss was 1.02 at epoch 717.

We note that when using full-batch, the training loss is noisier, and the validation loss is
significantly less noisy. In fact, the validation loss is nearly monotonically improving between
each target network update.

Although the mini-batch update achieved a validation loss of 1.02 that was slightly lower
than full-batch at 1.05, we selected the full-batch result, due to the similar performance with
far lower noise on the validation set.
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(a) mini-batch, η = 10−3 (b) full-batch, η = 10−3

(c) mini-batch, η = 2.5 × 10−4 (d) full-batch, η = 2.5 × 10−4

(e) mini-batch, η = 10−4 (f) full-batch, η = 10−4

(g) mini-batch, η = 2.5 × 10−5 (h) full-batch, η = 2.5 × 10−5

Figure 8.2: Comparison of learning curves for different learning rates η and mini-batch versus
full-batch using RMSprop for convolutional NFQ with dropout. Training loss marked in blue;
validation loss marked in green; lowest validation loss highlighted in yellow. The target network
was updated every 200 iterations.
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(a) mini-batch (b) full-batch

Figure 8.3: Learning curves for η = 2.5×10−5 with 400 iterations between NFQ target network
updates after episode 2. Training loss marked in blue; validation loss marked in green; lowest
validation loss highlighted in yellow.

(a) mini-batch (b) full-batch

Figure 8.4: Learning curves for η = 2.5×10−5 with 400 iterations between NFQ target network
updates after episode 3. Training loss marked in blue; validation loss marked in green; lowest
validation loss highlighted in yellow.

For the third training batch, we used the same learning rate of η = 2.5×10−5 and compared
mini-batch and full-batch training, as shown in Figure 8.4. The mini-batch method reached a
significantly better solution with a fitness of 1.12 during the first group of fitted Q iteration at
epoch 356, compared to a fitness of 1.20 found by full-batch training at epoch 770. We chose
the parameters from this mini-batch training epoch for the subsequent episode.

8.3.3 Analysis of learning progress

The performance of the robot measured in terms of average reward and total reward is illus-
trated in Figure 8.5 according to the results listed in Table 8.4. We can observe a general trend
towards increased performance, although the relatively small episode count did not result in
convergence.

The number of times each action was taken is listed in Table 8.5, along with details on the
predicted action-values within each episode. In the final episode, the robot usually preferred
the single action of turning left. This means that the Q-value for that action tended to be
higher than that for other actions, in the states which were evaluated. It is interesting to
ask the question of whether the Q-network was simply learning an average Q-value without
discriminating based on state, or learned to vary the Q-value, which could indicate that it
developed an ability to discriminate between states in predicting Q-values. In order to gain
insight in this regard, we analyzed how much the predicted Q-values varied between different
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Table 8.4: Reward per episode

Episode Average reward Total reward
1 -0.476 -2381.5
2 -0.226 -1131.1
3 -0.234 -1171.7
4 -0.122 -609.3

Figure 8.5: Average reward per episode

(a) Forward (b) Backward

(c) Left (d) Right

Figure 8.6: Predicted Q-values (mean, mininum and maximum) per action taken.
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Table 8.5: Predicted action-values per episode

Episode Action Mean Minimum Maximum Action Count
1 forward - - - 1296
1 backward - - - 1214
1 left - - - 1214
1 right - - - 1276
2 forward -0.43 -1.72 1.12 629
2 backward -0.47 -1.97 1.32 617
2 left -0.46 -1.76 1.23 3109
2 right -0.49 -1.55 0.84 645
3 forward -1.00 -1.81 0.51 648
3 backward -1.05 -1.67 0.27 661
3 left -1.02 -1.72 0.61 3087
3 right -1.09 -1.54 0.01 604
4 forward -1.14 -1.75 0.65 286
4 backward -1.13 -1.62 0.32 230
4 left -1.18 -2.19 0.62 4231
4 right -1.20 -1.89 0.09 253

states, across the episodes. The predicted Q-values from Table 8.5 are illustrated graphically
in Figure 8.6. The first episode is not illustrated, since it consisted of randomly chosen actions
with ε = 1.0. We can see that the mean values and upper and lower limits of the predictions
changed over time, and did not converge on a single narrow prediction range. This supports
the hypothesis that the states did have predictive value for the Q-network.

The optimal strategy would involve learning to efficiently complete laps around the race-
track in the correct direction, while avoiding collisions. This would require frequent use of
the “forward” action, with slightly less frequent use of the “turn left” action. We can see in
Table 8.5 that, in the final episode, although the “turn left” action was chosen most frequently,
when the “forward” action was chosen, it had a higher mean and maximum predicted Q-value.

These results provide some evidence for learning progress but would benefit from a much
higher episode count. The robotic platform as implemented required a lot of time to capture
episode data, as a human was required to monitor the robot and repair it in frequent cases of
mechanical failure. In future work, the robot platform should be made more robust to allow
for more efficient data collection in order to investigate the learning performance over a longer
timespan.
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Figure 8.7: NFQ without dropout regularization, mini-batch RMSprop, η = 2.5×10−4. Train-
ing loss marked in blue; validation loss marked in green; lowest validation loss highlighted in
yellow.

8.4 Analysis

For comparison purposes, we also include the result of running the NFQ algorithm on training
data without using dropout regularization in Figure 8.7. The training loss steadily converges
to zero, and the validation loss diverges immediately. This suggests that the procedure overfits
to the training data. The learning curves encountered when dropout regularization is used
do not display this pattern; instead, they demonstrate both the validation and training loss
decreasing until they plateau at a certain level before updating the target network, as illustrated
previously in Figures 8.1, 8.2, 8.3 and 8.4. This is evidence that dropout regularization may
be a useful addition to neural fitted Q iteration with convolutional neural networks.

Mini-batch training produced a noiser learning curve but in general arrived at a better solu-
tion than full-batch gradient descent. The choice of learning rates for the RMSprop algorithm
made a significant difference in the shape of the learning curves. The best validation loss was
generally achieved within the first one or two target network updates, with subsequent updates
producing higher validation losses.

The overall final validation loss was still significantly far above zero, suggesting that the
network had not yet arrived near a correct approximation of the target Q-function. However,
as discussed in the previous section, initial evidence of learning was observed.
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Chapter 9

Future Directions

9.1 Direct Policy Search

For direct policy search with neuroevolution, it would be interesting to also compare Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [54], and to compare in detail the
performance of the simple genetic algorithm used here with CMA-ES and CoSyNE [53].

Another worthwhile extension would be to eliminate the velocity limit (while modifying
the control frequency accordingly) and to test generalization ability on the entire track and on
different testing tracks, as in [46].

The convolutional neural network training procedure could also be replaced with a pro-
cedure using convolutional autoencoders for unsupervised feature learning as in [55], and the
resulting impact on controller performance could be studied.

It would also be informative to implement and study online end-to-end learning for the
convolutional neural network and recurrent neural network simultaneously, as in [45].

Furthermore, an analysis of the relative performance of stochastic gradient algorithms such
as REINFORCE [26] compared to neuroevolution for direct policy search would be an inter-
esting research direction.

9.2 Value-based Methods

The most important subsequent investigation proposed is to improve the robustness and effi-
ciency of the robot testbed to allow significantly more data to be collected to investigate the
convergence of the RC-NFQ algorithm with additional iterations and a larger pool of training
data.

An immediate extension of the convolutional neural network architecture with dropout
layers as described would include the addition of an LSTM [56] recurrent neural network layer
to allow the controller to take advantage of memory of prior states. In order to extend the
integration of dropout regularization layers with the NFQ algorithm and convolutional neural
networks to LSTM networks, the improved methods for effectively combining dropout with
RNNs presented in [57] could be applied.

An alternative simpler way to add a minimal amount of memory would be to provide the
network with several recent frames as an input tensor to the convolutional neural network, as
in [48] [32] [33].

Extending the RC-NFQ algorithm to the online case, resulting in a variant of the Deep
Q-Network (DQN) algorithm utilizing dropout regularization, would also be a possible next
step. Modifying the Q-network further by adding batch normalization layers [58] and analyzing
their effect on learning in both the NFQ and DQN settings could also be worthwhile.

In [59], more sophisticated techniques for sampling from an experience replay memory are
analyzed, and could be tested in this setting as well. Additional variations would consist of
varying the various hyperparameter values in the RC-NFQ algorithm.
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If a suitably similar environment were constructed in simulation, then experiments could be
conducted that took advantage of the faster timescales and parallelization possible in simulated
learning, with an adaptation and transfer of the learned policies to the real robot.

Actor-critic [20, Chapter 6] methods and advantage learning [60] [61] [62] [63] would be
another worthwhile direction in which to extend the RC-NFQ algorithm. Additionally, Monte-
Carlo tree search methods have recently been combined with convolutional neural networks for
control in TORCS [64] and Go [65] and present a promising research direction.

9.3 Exploration

Due to our observation that the robot tended to prefer one particular action after multiple
rounds of training despite not yet finding an optimal policy, it is likely the case that improved
exploration strategies beyond epsilon-greedy might help improve the efficiency of learning.

A simple addition would be to test softmax action selection rather than winner-take-all
action selection based on the estimated Q-values.

More complex additions would include the addition of an intrinsic motivation function
which rewards the agent for discovering novel states; in [66], the agent was rewarded for
discovering states that it did not yet know how to compress well, with the intention of driving
the compressor to improve its performance over time, and by extension, to improve the ability
of the controller to find a more effective control policy.

In recent work [67], an approach to deep (temporally-extended) exploration is applied to
DQN and could also be extended to this setting.

35



Chapter 10

Conclusion

A brief overview of neural networks and reinforcement learning was presented, and the deep
reinforcement learning paradigm was introduced. This was followed by a description of a
method which uses neural networks for deep reinforcement learning via direct policy search
with neuroevolution, and the value-based methods Neural Fitted Q Iteration (NFQ) and Deep
Q-Networks (DQN).

Detailed algorithms were presented for direct policy search using neuroevolution and for a
novel extension of NFQ called Regularized Convolutional Neural Fitted Q Iteration (RC-NFQ),
which adds convolutional neural networks and dropout regularization to the NFQ algorithm
along with several elements from the DQN algorithm.

A modified version of the TORCS race-car simulator and a real robotic car testbed were
presented as environments for developing and testing deep reinforcement learning algorithms
which learn control policies from high-dimensional vision input in simulated or real environ-
ments.

Experiments applying direct policy search using neuroevolution to the TORCS race-car
simulator were presented, illustrating successful learning of certain control policies and com-
paring different hyperparameter settings.

Additionally, preliminary experiments applying the proposed RC-NFQ algorithm to the
problem of robotic control using the robotic car testbed were presented. The effects of dropout
regularization and various hyperparameters on learning were analyzed. Initial evidence of
learning progress and a beneficial effect of regularization were found, and should be investigated
further in subsequent work. Finally, several additional extensions were proposed to compare
learning algorithms and exploration policies.
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Chapter 11

Supplementary Materials

11.1 Summary

Source code for our implementation of the algorithms is available at the following links, along
with datasets used for training and a sample video of the neuroevolution process.

11.2 Source Code

11.2.1 Neuroevolution

The neuroevolution implementation is available here:
https://github.com/cosmoharrigan/neuroevolution

11.2.2 RC-NFQ

The RC-NFQ implementation is available here:
https://github.com/cosmoharrigan/rc-nfq

11.3 Datasets

11.3.1 Neuroevolution

The training images for the convolutional neural network are available here:
http://machineintelligence.org/neuroevolution/training_images.zip

11.3.2 RC-NFQ

The experience tuples collected from the robot are available here:
http://machineintelligence.org/rc-nfq/experience_tuples.zip

11.4 Videos

11.4.1 Neuroevolution

A video sample of the training process is available here:
https://youtu.be/rS4F2V2VdoQ
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