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Why is Deep Learning relevant for AGI?
Abstract

The relevance of deep learning to the field of Artificial General Intelligence
research is described, in terms of the expanding scope of deep learning
model designs and the increasing combination of deep learning with other
methods to form hybrid architectures.

Deep learning is a rapidly expanding research area, and various groups
have recently proposed novel extensions to earlier deep learning models,
including: generative models; the ability to interface with external memory
and other external resources; Neural Turing Machines which learn
programs; deep reinforcement learning; neuroevolution; intrinsic
motivation and unsupervised learning; and more complex network models.

These slides constitute a brief survey of selected work from recent papers
in the field. Citations for the content are provided in the footnotes.
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Why is Deep Learning relevant for AGI?
Abstract

The presentation is organized with a view towards the integration of
additional abilities into deep learning architectures, including: planning;
reasoning and logic; data efficient learning and one-shot learning; program
induction; additional learning algorithms other than backpropagation; more
sophisticated techniques for unsupervised learning and reinforcement
learning; and structured prediction.

We can view deep learning research as making significant contributions
relevant to AGI, but also note that future progress in the field will likely
depend on integrating threads of research from cognitive science, machine
learning, universal artificial intelligence and symbolic artificial intelligence,
resulting in systems that significantly extend the boundaries of what might
be considered “deep learning” today.
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Why is Deep Learning relevant for AGI?
Summary

Deep learning is relevant to AGI research for two reasons: because its
methods are expanding in scope, and because it is effectively being
combined with other methods to form hybrid architectures.

Expanding in Scope

It is expanding to encompass a wide range of methods, including: memory,
unsupervised learning, learning to act, program learning and attention.

Hybrid Systems

It is increasingly being used in conjunction with other methods to form
hybrid architectures.
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Universal Intelligence

We can frame deep learning for AGI as a specific research direction with
the goal of designing appropriate methods for approximating universal
intelligence.

AIXI Approximation: Planning and Learning

There are two parts to AIXI. The first is the expectimax search into the
future which we will call planning. The second is the use of a Bayesian
mixture over Turing machines to predict future observations and rewards
based on past experience; we will call that learning. Both parts need to
be approximated for computational tractability.a

aJoel Veness et al. “A Monte-Carlo AIXI Approximation”. In: Journal of
Artificial Intelligence Research 40.1 (2011), pp. 95–142.
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Defining Deep Neural Networks I

What is a useful definition for deep neural networks?

Schmidhuber1 presents a non-traditional, useful definition of deep neural
networks, in terms of the following concepts:

1 Definition/Program implemented by the network

2 Partially Causal Sequences

3 Topology

4 Weight Sharing

5 Credit Assignment Paths

6 Potential Causal Connections

7 Depth
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Defining Deep Neural Networks II

Definition/Program

The NN’s behavior or program is determined by a set of real-valued,
possibly modifiable, parameters or weights wi (i = 1, . . . , n).a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.

Partially Causal Sequences

During an episode, there is a partially causal sequence xt(t = 1, . . . ,T ) of
real values called events. Each xt is either an input set by the
environment, or the activation of a unit that may directly depend on other
xk(k < t) through a current NN topology-dependent set int of indices k
representing incoming causal connections or links.a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.
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Defining Deep Neural Networks III

Topology

Let the function v encode topology information and map such event index
pairs (k , t) to weight indices.

xt may directly affect certain xk(k > t) through outgoing connections or
links represented through a current set outt of indices k with t ∈ ink .
Some of the non-input events are called output events.a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.

Cosmo Harrigan Deep Learning for AGI 9 / 68



Defining Deep Neural Networks IV

Weight Sharing

Note that many of the xt may refer to different, time-varying activations
of the same unit in sequence-processing RNNs (“unfolding in time”).

During an episode, the same weight may get reused over and over again in
topology-dependent ways, e.g., in RNNs, or in convolutional NNs.

This is called weight sharing across space and/or time. Weight sharing
may greatly reduce the NN’s descriptive complexity, which is the number
of bits of information required to describe the NN.a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.
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Defining Deep Neural Networks V

Credit Assignment Paths

To measure whether credit assignment in a given NN application is of the
deep or shallow type, we introduce the concept of Credit Assignment
Paths or CAPs, which are chains of possibly causal links between the
events; e.g., from input through hidden to output layers in FNNs, or
through transformations over time in RNNs.a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.
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Defining Deep Neural Networks VI

Potential Causal Connections

More general, possibly indirect, Potential Causal Connections (PCC) are
expressed by the recursively defined Boolean predicate pcc(p, q), which in
the SL case is true only if pdcc(p, q), or if pcc(p, k) for some k and
pdcc(k, q).

In the latter case, appending q to any CAP from p to k yields a CAP from
p to q (this is a recursive definition, too).

The set of such CAPs may be large but is finite. Note that the same
weight may affect many different PDCCs between successive events listed
by a given CAP, e.g., in the case of RNNs, or weight-sharing FNNs.a

aJürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.
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Defining Deep Neural Networks VII

Depth

Suppose a CAP has the form (. . . , k , t, . . . , q), where k and t (possibly
t = q) are the first successive elements with modifiable wv(k,t). Then the
length of the suffix list (t, . . . , q) is called the CAP’s depth.

Thus, we arrive at the concept of Deep Learning.

1Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
Networks 61 (2015), pp. 85–117.
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Intrinsic Motivation
Definition

Intrinsically motivated agents explore new behaviors simply to satisfy
an internal drive for discovery, defined in one of multiple possible
ways, rather than to directly solve problems

Intrinsic behaviors could eventually help the agent to solve tasks
presented by the environment

Useful in settings with sparse, delayed rewards

Examples: hunger, boredom, curiosity
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Intrinsic Motivation
Hierarchical DQN2

Hierarchical DQN (h-DQN) is a framework to integrate hierarchical value
functions, operating at different temporal scales, with intrinsically
motivated deep reinforcement learning.

2Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating
Temporal Abstraction and Intrinsic Motivation”. In: (Apr. 2016), p. 13. arXiv:
1604.06057. url: http://arxiv.org/abs/1604.06057%7B%5C#%7D.
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Intrinsic Motivation
Hierarchical DQN3

Scheme for temporal abstraction that involves simultaneously learning
options (intrinsic goals) and a control policy to compose options in a
deep reinforcement learning setting

Allows for flexible goal specifications, such as functions over entities
and relations

Provides an efficient space for exploration in complicated
environments

3Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating
Temporal Abstraction and Intrinsic Motivation”. In: (Apr. 2016), p. 13. arXiv:
1604.06057. url: http://arxiv.org/abs/1604.06057%7B%5C#%7D.
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Intrinsic Motivation
Hierarchical DQN4

4Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating
Temporal Abstraction and Intrinsic Motivation”. In: (Apr. 2016), p. 13. arXiv:
1604.06057. url: http://arxiv.org/abs/1604.06057%7B%5C#%7D.
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Intrinsic Motivation
Hierarchical DQN5

5Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating
Temporal Abstraction and Intrinsic Motivation”. In: (Apr. 2016), p. 13. arXiv:
1604.06057. url: http://arxiv.org/abs/1604.06057%7B%5C#%7D.
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Intrinsic Motivation
Hierarchical DQN6

Applied to Montezuma’s Revenge (delayed reward setting). Comparison of
h-DQN with DQN demonstrates increased effectiveness for delayed
rewards:

6Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating
Temporal Abstraction and Intrinsic Motivation”. In: (Apr. 2016), p. 13. arXiv:
1604.06057. url: http://arxiv.org/abs/1604.06057%7B%5C#%7D.
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Intrinsic Motivation
Possible Reward Functions

Some possible reward functions for intrinsic motivation:7

1 Missing information or Bayesian surprise, measuring the change in an
agents internal belief after the observation of new data

2 Measures based on prediction errors of future states

3 Salient event prediction

4 Measures based on information-theoretic quantities

5 Empowerment

7Shakir Mohamed and Danilo Jimenez Rezende. Variational Information
Maximisation for Intrinsically Motivated Reinforcement Learning. 2015.

Cosmo Harrigan Deep Learning for AGI 20 / 68



Intrinsic Motivation
Empowerment8

Many ways in which to formally define internal drives

What all such definitions have in common is that they, in some
unsupervised fashion, allow an agent to reason about the value of
information in the action-observation sequences it experiences

The mutual information allows for exactly this type of reasoning and
forms the basis of one popular intrinsic reward measure, known as
empowerment

8Shakir Mohamed and Danilo Jimenez Rezende. Variational Information
Maximisation for Intrinsically Motivated Reinforcement Learning. 2015.
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Generative Models in Deep Learning
Definition

Variational Autoencoders (latent-variable probabilistic models) are
used for unsupervised learning of abstract features

Employing rich parametric density estimators formed by the fusion of
probabilistic modeling and deep neural networks9

9Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
(Dec. 2013). arXiv: 1312.6114. url: http://arxiv.org/abs/1312.6114.
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Generative Models
Analogical Reasoning10

Leftmost columns: images from the test set.

Subsequent columns: analogical fantasies by the generative model,
where the latent variable of each row is set to the value inferred from
the test-set image on the left by the inference network.

Each column corresponds to a class label.
10Diederik P Kingma et al. “Semi-Supervised Learning with Deep Generative Models”.

In: arXiv.org cs.LG (June 2014), pp. 1–9. arXiv: arXiv:1406.5298v1. url:
http://arxiv.org/abs/1406.5298v2.
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Generative Models
Generative Adversarial Networks11

Simultaneously train two models: a generative model G that captures
the data distribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather than G

Training procedure for G is to maximize the probability of D making
a mistake

Corresponds to a minimax two-player game

11Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems. 2014, pp. 2672–2680. url:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.
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Generative Models
Example: Varying Features in a Learned Model of Chairs12

Train a neural network to generate accurate images of chairs from a
high-level description: class, orientation with respect to the camera,
and additional parameters such as color, brightness, etc.

Interpolation between examples

Generating new examples by varying specific features

12Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning To
Generate Chairs With Convolutional Neural Networks. 2015. arXiv: 1411.5928.
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Generative Models
Activating Various Transformations13

13Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning To
Generate Chairs With Convolutional Neural Networks. 2015. arXiv: 1411.5928.
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Generative Models
Architecture14

14Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning To
Generate Chairs With Convolutional Neural Networks. 2015. arXiv: 1411.5928.
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Generative Models
Combination of GANs + Laplacian Pyramids15

Laplacian Pyramids combined with Generative Adversarial Networks for
generating images of a class.

15Emily Denton et al. “Deep Generative Image Models using a Laplacian Pyramid of
Adversarial Networks”. In: Advances in Neural Information Processing Systems (2015),
pp. 1486–1494.
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Memory
Feedback Recurrent Memory Q-Network (FRMQN)16

Context-dependent memory retrieval for deep reinforcement learning.
Utilizes attention to decide which memories to focus on for computing the
value function.

16Junhyuk Oh et al. “Control of Memory, Active Perception, and Action in Minecraft”.
In: (May 2016). arXiv: 1605.09128. url: http://arxiv.org/abs/1605.09128.
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Program Learning
Neural Turing Machines

Neural Turing Machines extend the capabilities of neural networks by
coupling them to external memory resources, which they can interact with
by attentional processes. The combined system is analogous to a Turing
Machine or Von Neumann architecture but is differentiable end-to-end,
allowing it to be efficiently trained with gradient descent.17

17Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv
preprint arXiv:1410.5401 (2014).
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Program Learning
Neural Turing Machines18

NTMs infer simple algorithms such as copying, sorting, and
associative recall from input and output examples

Enrich the capabilities of standard recurrent networks to simplify the
solution of algorithmic tasks by adding a large, addressable memory

Capacity for short-term storage of information and its rule-based
manipulation

Rules are simple programs, and the stored information constitutes the
arguments of these programs

An NTM resembles a working memory system, as it is designed to
solve tasks that require the application of approximate rules to
“rapidly-created variables.”

18Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv
preprint arXiv:1410.5401 (2014).
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Program Learning
Neural GPUs19

Unlike the NTM, the Neural GPU is highly parallel which makes it
easier to train and efficient to run

An essential property of algorithms is their ability to handle inputs of
arbitrary size

The Neural GPU can be trained on short instances of an algorithmic
task and successfully generalize to long instances.

Verified on a number of tasks including long addition and long
multiplication of numbers represented in binary

19  Lukasz Kaiser and Ilya Sutskever. “Neural GPUs Learn Algorithms”. In: (Nov.
2015). arXiv: 1511.08228. url: http://arxiv.org/abs/1511.08228.
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Program Learning
Neural Programmer-Interpreter20

Neural Programmer-Interpreter (NPI): a recurrent and compositional
neural network that learns to represent and execute programs. NPI has
three learnable components:

Task-agnostic recurrent core

Persistent key-value program memory

Domain-specific encoders that enable a single NPI to operate in
multiple perceptually diverse environments with distinct affordances.

By learning to compose lower-level programs to express higher-level
programs, NPI reduces sample complexity and increases generalization
ability compared to sequence-to-sequence LSTMs.
Program memory allows efficient learning of additional tasks by building
on existing programs.

20Scott Reed and Nando de Freitas. “Neural Programmer-Interpreters”. In: (Nov.
2015). arXiv: 1511.06279. url: http://arxiv.org/abs/1511.06279.
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Program Learning
Neural Programmer-Interpreter: Performance21

21Scott Reed and Nando de Freitas. “Neural Programmer-Interpreters”. In: (Nov.
2015). arXiv: 1511.06279. url: http://arxiv.org/abs/1511.06279.
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Neuroevolution

In addition to being used for feature learning, neural networks can also be
applied to reinforcement learning as a policy search method, by
representing the controller as a neural network and optimizing the
parameters of the controller using a genetic algorithm.

22

22Jan Koutńık, Jürgen Schmidhuber, and Faustino Gomez. “Online evolution of deep
convolutional network for vision-based reinforcement learning”. In: Lecture Notes in
Computer Science 8575 LNAI (2014), pp. 260–269.
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Deep Reinforcement Learning
Learning to Act from Pixels: TORCS232425

23Jan Koutńık et al. “Evolving large-scale neural networks for vision-based
reinforcement learning”. In: Proceeding of the 2013 Conference on Genetic and
Evolutionary Computation. New York, New York, USA: ACM Press, July 2013, p. 1061.

24Jan Koutńık, Jürgen Schmidhuber, and Faustino Gomez. “Evolving deep
unsupervised convolutional networks for vision-based reinforcement learning”. In:
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation. ACM.
2014, pp. 541–548.

25Jan Koutńık, Jürgen Schmidhuber, and Faustino Gomez. “Online evolution of deep
convolutional network for vision-based reinforcement learning”. In: Lecture Notes in
Computer Science 8575 LNAI (2014), pp. 260–269.
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Deep Reinforcement Learning
Learning to Act from Pixels: Atari2627

26Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
(Dec. 2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.

27Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529–533. issn: 0028-0836. doi:
10.1038/nature14236. arXiv: 1312.5602. url:
http://dx.doi.org/10.1038/nature14236.
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One-Shot Learning28

28Brenden M. Lake et al. “Building Machines That Learn and Think Like People”.
In: (Apr. 2016). arXiv: 1604.00289. url: http://arxiv.org/abs/1604.00289.
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One-Shot Learning
Data Efficiency

Deep reinforcement learning is very data inefficient.

How to discover of relevant aspects of the environment efficiently?
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Data Efficiency
One-Shot Learning and Episodic Control

This episodic control method presents a hybrid system, combining deep
learning (variational autoencoders) for feature selection with an episodic
memory.29

Episodic control30 is an approach that can rapidly re-enact observed,
successful policies
Episodic control records highly rewarding experiences and follows a
policy that replays sequences of actions that previously yielded high
returns
Tackles a critical deficiency in current reinforcement learning systems:
their inability to learn in a one-shot fashion.
A fast-learning system based on non-parametric memorization of
experience

29Charles Blundell et al. “Model-Free Episodic Control”. In: (June 2016). arXiv:
1606.04460. url: http://arxiv.org/abs/1606.04460.

30Máté Lengyel and Peter Dayan. “Hippocampal Contributions to Control: The Third
Way”. In: Advances in Neural Information Processing Systems 2007. (2007),
pp. 889–896.
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Data Efficiency
Episodic Control31

Humans and animals utilize multiple learning, memory, and decision
systems each best suited to different settings

When an accurate model of the environment is available, and there
are sufficient time and working memory resources, the best strategy is
model-based planning associated with prefrontal cortex

When there is no time or no resources available for planning, the less
compute-intensive immediate decision systems must be employed

Quick-to-learn instance-based control policies serve as a rough
approximation while a slower more generalizable decision system is
trained up

Deep learning is used for embedding observations in state space

31Charles Blundell et al. “Model-Free Episodic Control”. In: (June 2016). arXiv:
1606.04460. url: http://arxiv.org/abs/1606.04460.
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Data Efficiency
Memory Augmented Neural Networks32

Rapidly assimilate new data, leverage this data to make accurate
predictions after only a few samples

Method for accessing an external memory that focuses on memory
content, unlike previous methods that use memory location-based
focusing mechanisms

32Adam Santoro et al. One-shot Learning with Memory-Augmented Neural Networks.
2016. arXiv: 1605.06065.
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Data Efficiency
Prioritized Experience Replay33

Traditionally, experience transitions are uniformly sampled from a
replay memory

Simply replays transitions at the same frequency that they were
originally experienced, regardless of their significance

New framework for prioritizing experience, so as to replay important
transitions more frequently, and therefore learn more efficiently

More frequently replay transitions with high expected learning
progress, as measured by the magnitude of their temporal-difference
(TD) error

33Tom Schaul et al. “Prioritized Experience Replay”. In: (Nov. 2015). arXiv:
1511.05952. url: http://arxiv.org/abs/1511.05952.
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Transfer Learning
Actor-Mimic Multitask Learning34

Ability to act in multiple environments and transfer previous
knowledge to new situations a critical aspect of any intelligent agent

Novel method of multitask and transfer learning that enables an
autonomous agent to learn how to behave in multiple tasks
simultaneously, and then generalize its knowledge to new domains

Train a single policy network that learns how to act in a set of
distinct tasks by using the guidance of several expert teachers.

Representations learnt by the deep policy network are capable of
generalizing to new tasks with no prior expert guidance

34Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-Mimic: Deep
Multitask and Transfer Reinforcement Learning”. In: (Nov. 2015). arXiv: 1511.06342.
url: http://arxiv.org/abs/1511.06342.
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Transfer Learning
Deep Skill Networks35

Hierarchical Deep RL Network (H-DRLN) extends DQN to facilitate
skill reuse in lifelong learning

The H-DRLN learns a policy that determines when to execute
primitive actions and when to reuse pre-learned skills

35Chen Tessler et al. “A Deep Hierarchical Approach to Lifelong Learning in
Minecraft”. In: (2016). arXiv: 1604.07255.
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Transfer Learning
Deep Skill Networks36

The pre-learned skills are represented with deep networks and are referred
to as Deep Skill Networks (DSNs).

36Chen Tessler et al. “A Deep Hierarchical Approach to Lifelong Learning in
Minecraft”. In: (2016). arXiv: 1604.07255.
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Transfer Learning
General ReUse of Static Modules37

Evolves new neural network modules

Learns to reuse previous modules in new domains

Applied to the Atari Learning Environment

37Alexander Braylan et al. “Reuse of Neural Modules for General Video Game
Playing”. In: (2015). arXiv: 1512.01537.
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Universal Value Function Approximators38

Extends the idea of value function approximation to both states s and
goals g

Uses a universal value function approximator V (s, g , θ)

A sufficiently expressive function approximator can in principle
identify and exploit structure across both s and g

By universal, we mean that the value function can generalize to any
goal g in a set G of possible goals.

38Tom Schaul et al. “Universal Value Function Approximators”. In: Proceedings of
the 32nd International Conference on Machine Learning (2015).
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Other New Architectures
Deep Recurrent Q-Networks39

Adds recurrency to the Deep Q-network (DQN) by replacing the first
post-convolutional fully-connected layer with a recurrent LSTM

Intended to address partial observability and noisy state information

39Matthew Hausknecht and Peter Stone. “Deep Recurrent Q-Learning for Partially
Observable MDPs”. In: (July 2015). arXiv: 1507.06527. url:
http://arxiv.org/abs/1507.06527.
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Other New Architectures
Highway Networks40

Allow unimpeded, direct information flow across many layers

Gating units learn to regulate the flow of information through a
network

40Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training Very
Deep Networks”. In: (July 2015), p. 11. arXiv: 1507.06228. url:
http://arxiv.org/abs/1507.06228.
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Other New Architectures
Ladder Networks41

For deep unsupervised learning

Autoencoder with lateral shortcut connections from the encoder to
decoder at each level of the hierarchy

Lateral shortcut connections allow the higher levels of the hierarchy to
focus on abstract invariant features

While standard autoencoders are analogous to latent variable models
with a single layer of stochastic variables, the proposed network is
analogous to hierarchical latent variables models.

41Harri Valpola. “From neural PCA to deep unsupervised learning”. In: (Nov. 2014).
arXiv: 1411.7783. url: http://arxiv.org/abs/1411.7783.
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Other New Architectures
Deuling Network with Advantage Learning42

Dueling network architecture consists of two streams

Sharing a common convolutional feature learning module

Representing the value and advantage functions

42Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network Architectures
for Deep Reinforcement Learning”. In: (Nov. 2015), p. 14. arXiv: 1511.06581. url:
http://arxiv.org/abs/1511.06581.
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Other New Architectures
Premise Selection for Automated Theorem Proving43

Given a large set of premises P, an ATP system A with given resource
limits, and a new conjecture C, predict those premises from P that
will most likely lead to an automatically constructed proof of C by A.

Strong premise selection requires models capable of reasoning over
mathematical statements, here encoded as variable-length strings of
first-order logic

Mimics some higher-level reasoning on simple algorithmic tasks

Extract learned representations of mathematical statements to assist
in premise selection and proof

43Alex A. Alemi et al. DeepMath - Deep Sequence Models for Premise Selection.
2016. arXiv: 1606.04442.
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Other New Architectures
“Learning to Think”44

Proposes an architecture with a predictive RNN world-model M along with
an RNN controller C which learns to exploit M.

44Juergen Schmidhuber. “On Learning to Think: Algorithmic Information Theory for
Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World
Models”. In: (Nov. 2015), p. 36. arXiv: 1511.09249. url:
http://arxiv.org/abs/1511.09249.
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Other New Architectures
Inspirations from Neuroscience

Recent developments, as described in Towards an integration of deep
learning and neuroscience45:

Structured architectures are used, including dedicated systems for
attention, recursion and various forms of short- and long-term
memory storage

Heterogeneously optimized systems, enabled by a series of interacting
cost functions, serve to make learning data-efficient and precisely
targeted to the needs of the organism

45Adam H Marblestone, Greg Wayne, and Konrad P Kording. “Towards an
integration of deep learning and neuroscience”. In: (2016). doi: 10.1101/058545.
arXiv: 1606.03813.
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Hybrid Models
Deep Learning with Monte-Carlo Tree Search: UCT to CNN46

Use slow planning-based agents to provide training data for a
deep-learning architecture capable of real-time play.

Methods for combining UCT-based RL with DL:

UCT to CNN via Regression

UCT to CNN via Classification

UCT to CNN via Classification-Interleaved

Focus planning on that part of the state space experienced by the
(partially trained) CNN player. Continue alternating between training the
CNN and UCT planning rollouts.

46Xiaoxiao Guo et al. “Deep Learning for Real-Time Atari Game Play Using Offline
Monte-Carlo Tree Search Planning”. In: Advances in Neural Information Processing
Systems. 2014, pp. 3338–3346.
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Hybrid Models
Deep Learning with Monte-Carlo Tree Search: AlphaGo47

AlphaGo: MCTS + Deep Learning

New search algorithm that combines Monte Carlo simulation with value
networks (to evaluate board positions) and policy networks (to select
moves).

47David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7585 (2016), pp. 484–489. issn: 0028-0836. doi:
10.1038/nature16961. url: http://dx.doi.org/10.1038/nature16961.
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Future

“Future generations of neural networks will look very different from the
current state-of-the-art.

They may be endowed with intuitive physics, theory of mind, and causal
reasoning.

More structure and inductive biases could be built into the networks or
learned from previous experience with related tasks, leading to more
human-like patterns of learning and development.”48

Additional possibilities:

Planning

Reasoning

Cognitive Architectures

48Brenden M. Lake et al. “Building Machines That Learn and Think Like People”.
In: (Apr. 2016). arXiv: 1604.00289. url: http://arxiv.org/abs/1604.00289.
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Conclusion

Deep learning methods are relevant to the field of Artificial General
Intelligence research, since they are expanding in scope to encompass
many types of functionality, and are effectively being combined with other
methods to form hybrid architectures.

Expanding in Scope

Expanding to encompass a wide range of methods, including: memory,
unsupervised learning, learning to act, program learning and attention.

Hybrid Systems

Increasingly being used in conjunction with other methods to form hybrid
architectures.

Contact:
cosmoh@uw.edu

@cosmosquared
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